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1. There are 12 squares.

Since an octagon has 8 vertices, there are
(
8
2

)
= 28 edges and interior diagonals. Define two lines

(edges or diagonals) to be compatible if they are either parallel or perpendicular. That is, they are the
same up to translations and 90-degree rotations.

Notice that any square that is made in the octagon is made of four compatible lines. That is, each
side of the square is parallel or perpendicular to each other side of the square. Therefore, to find all
squares, we can look for equivalence classes of compatible lines (all the lines in a set equivalent to
each other) and we only need to consider squares within each equivalence class.

There are four such equivalence classes, and we can draw them as follows:

The top two equivalence classes have 1 square each, and the bottom two equivalence classes have 5
squares each. Thus the answer is

1 + 1 + 5 + 5 = 12.

2. Using polynomial division, we can write p(x) = (x2 + x)A(x) + bx+ c where A(x) is a polynomial
with real coefficients and b and c are constants.

Then we find ⌊
p(x)

x

⌋
= (x+ 1)A(x) + b and

⌊
p(x)

x+ 1

⌋
= xA(x) + b,

so adding these, (2x+ 1)A(x) + 2b = x2.

Plugging in x = −1
2 , it follows that 2b = 1

4 , so b = 1
8 . Therefore, (2x + 1)A(x) + 1

4 = x2, or
2(x+ 1

2)A(x) = (x+ 1
2)(x−

1
2). Hence, A(x) = 1

2x−
1
4 . Any value of c works.

Plugging these back in for p(x) and expanding, the answer we get is

p(x) = 1
2x

3 + 1
4x

2 − 1
8x+ c for any c ∈ R.
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3. We claim that Paris has the winning strategy as follows: he can win by picking apples on each turn
and stealing apples only if it leads to an immediate win.

Define

Tn = 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

to be the nth triangular number, and note that T49 = 1225, the required number of apples to win.
Since he picks one more apple each time he picks, and after n picks (if no apples are stolen) he ends
up with Tn apples, Menelaus cannot win until at least the 49th turn.

We split the game into three possible cases.

• First, suppose that Menelaus does not spoil apples in the first 35 turns. On Paris’s 35th turn, he
can steal and win, adding Menalaus’s T35 apples to his current T34 apples for a total of

34 · 35
2

+
35 · 36

2
= 352 = 1225.

• Second, suppose that Menelaus spoils Paris’s apples once within the first 35 turns, but does not
spoil again before turn 50. Then, after his 49th turn, Menelaus has T48 apples and Paris has

p ≥ 48 + 47 + · · ·+ 35 > 49.

Once again, Paris can steal immediately to obtain at least T48 + 49 = T49 apples and win.

• Finally, suppose that after turn 49, Menelaus has spoiled Paris’s apples at least twice. Let
Menelaus pick apples for the 48th time on turn N . (If such a turn N does not exist, then Paris
wins after picking at most 1225 times, so the proof is done.) Since Menelaus has spoiled twice,
we have N ≥ 50. After Menelaus picks on turn N , Paris has picked every turn and thus has at
least the N − 1 apples from turn N − 1 unspoiled in his basket. Then Paris can steal on turn N ,
achieving

p ≥ N − 1 + T48 ≥ 49 + T48 = T49 = 1225

apples in his basket and winning the game.

Since these three cases exhaust all possibilities under Paris’s given strategy, Paris has the winning
strategy.

4. Solution 1: The answer is 3375. Let S(N) denote the split-sum of N . We begin with two lemmas.

Lemma 1: For any integer N with 2d or 2d− 1 digits, S(N) ≡ N (mod 10d − 1).

Proof. Let a make up the first d or d− 1 digits of N and b make up the last d digits. Then

S(N) = a+ b ≡ 10d · a+ b = N (mod 10d − 1).

Now suppose that m is some positive integer with k digits. Then m2 has either 2k − 1 or 2k digits,
so S(m2) ≡ m2 (mod 10k − 1).
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Lemma 2: Let m be a k−digit positive integer. If m2 ≡ m (mod 10k − 1), then S(m2) = m.

Proof. By Lemma 1, S(m2) ≡ m2 (mod 10k − 1).

Let S(m2) = a+ b following the same notation as in the proof of Lemma 1. We have m2 < 10k ·m,
which implies a < m. Since b ≤ 10k − 1, it follows that

S(m2) = a+ b < m+ 10k − 1.

Moreover,
S(m2) > 0 ≥ m− (10k − 1).

Putting these together, if S(m2) ≡ m (mod 10k − 1) then S(m2) must equal m.

Now, suppose that the digits of m are identical; then

m = ℓ · 10
k − 1

9

for some 1 ≤ ℓ ≤ 9. Note that 10k−1
9 is a string of k 1′s and so is divisible by 3 exactly when k is

divisible by 3.

If 3 ∤ k then 9 is prime to 10k−1
9 so the Chinese Remainder Theorem means we need exactly

m2 ≡ m

(
mod

10k − 1

9

)
m2 ≡ m (mod 9).

The first condition is trivial because 10k−1
9 | m. The second condition is satisfied when m ≡ 0, 1

(mod 9). But m ≡ kℓ (mod 9) so we need either ℓ = 9 or ℓ to be the inverse of k (mod 9), which
is unique since 3 ∤ k.

If 3 | k then we already know ℓ = 9 works, so suppose ℓ < 9. Using the Chinese Remainder Theorem,
we need m2 ≡ m (mod 3n) where n = v3(10

k − 1). But 1 ≤ v3(m) < n so this is impossible, as
v3(m) < v3(m

2). Thus we only have ℓ = 9.

In total we have the 2025 values for ℓ = 9 (9, 99, 999, . . . ) and the 2025 · 2/3 = 1350 values when
3 ∤ k (1, 55, 7777, 22222, . . . ), for 3375 in total.

Solution 2: Let d be the common digit and n the number of digits of m, so that m = d10n−1
9 . Noting

that 102n−2 ≤ m2 < 102n, m2 has 2n − 1 or 2n digits, so the split-sum of m2 will have n digits in
the second part. Thus, writing

m2 = 10nq + r

where 0 ≤ r < 10n, we find that the condition holds iff q + r = m. Substituting r = m2 − 10nq, we
rewrite this equation as

q + (m2 − 10nq) = m

⇐⇒ m(m− 1) = q(10n − 1)

3
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Finally, substituting m = d10n−1
9 , we get

d
10n − 1

9

(
d
10n − 1

9
− 1

)
= q(10n − 1)

⇐⇒ d

9

(
d
10n − 1

9
− 1

)
︸ ︷︷ ︸

E

= q.

To recap, we have shown that m satisfies the conditions iff the expression E (above) is equal to the
value of m2 prior to the last n digits, i.e. E =

⌊
m2

10n

⌋
. In general, y = ⌊x⌋ iff y is an integer and

x− y ∈ [0, 1). So we need to solve for when (i) E is an integer and (ii) m2

10n − E ∈ [0, 1).

Starting with condition (ii), we have

m2

10n
− E =

d2

81
· 10n − 2d2

81
+

d2

81
· 10−n −

(
d2

81
· 10n − d2

81
− d

9

)
=

d

9
− d2

81
+

d2

81
· 10−n

=
d

9

(
1− d

9

)
+

d2

81
· 10−n

≤ 1

2
· 1
2
+ 1 · 1

10

=
1

4
+

1

10
< 1,

so condition (ii) always holds, since n ≥ 1. So it remains to consider condition (i). This holds iff

d

(
d
10n − 1

9
− 1

)
≡ 0 (mod 9)

Reducing,
d(nd− 1) ≡ 0 (mod 9)

which holds iff either d = 9 or nd ≡ 1 (mod 9). Hence, it remains to count pairs (n, d) with
1 ≤ n ≤ 2025 and 1 ≤ d ≤ 9 satisfying either d = 9 or nd ≡ 1 (mod 9).

• For the d = 9 case, we have n = 1 to n = 2025, so 2025 possibilities.

• For the nd ≡ 1 (mod 9) case, we can make n to be any value between 1 and 2025 relatively
prime to 9, which is exactly 2

3 of all such values (since 2025 is divisible by 9 and ϕ(9) = 6). So
we get 2025 · 23 = 1350 possibilities.

In total, we have 2025 + 1350 = 3375 possibilities.
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5. Solution 1: In the following solution, all angles are directed angles.

Construct
−−→
CX such that ∡PCX = 60◦. If XC is parallel to AB, then ∡PCX = ∡PBA implies

that C, P , B are collinear, so
←→
CP ∥

←→
AD, which contradicts what we are given, namely that

←→
CP

intersects
←→
AD. Let therefore

←→
XC intersect

←→
AB at R. Let Q′ be the unique point on

−−→
CP such that

∡CRQ′ = 60◦; then △CRQ′ is equilateral. We claim that Q′ = Q, which is equivalent to showing
that Q′ lies on AD, although we draw it as if Q′ does not lie on AD.

A B

CD

P
Q′

R

X

60◦

Now ∡RQ′P = ∡RQ′C = 60◦, while ∡RAP = ∡BAP = 60◦. Hence R, Q′, A, P are concyclic.

At the same time, ∡PBR = 60◦ = ∡PCR (remember, we are using directed angles), so B, P , C, R
are concyclic.

It follows that ∡RBC = ∡RPC = ∡RPQ′ = ∡RAQ′, so AQ′ ∥ BC. Since the line through A

parallel to
←→
BC can intersect line

←→
CP in a unique point (and both Q and Q′ satisfy this property), we

conclude that Q = Q′, so△CRQ is equilateral, and R is the desired point.

Solution 2: In the following solution, all angles are directed angles.

Construct equilateral triangle CPS (counterclockwise, so with S below line CP in the diagram be-
low). As above, (using X = S), we find that

←→
CS cannot be parallel to

←→
AB by the information given

in the problem statement, so suppose that
←→
CS intersects

←→
AB at a point R, shown below.

A B

CD

PQ

R

S

5
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Then as R, A, and B are collinear, ∡RAP = ∡BAP = 60◦, and as R, S, and C are collinear,
∡RSP = ∡CSP = 60◦. Hence R, A, S, P are concyclic.

Rotation about P by 60 degrees counterclockwise turns A into B and S into C, and hence transforms
△ASP into △BCP . It follows that ∡PSA = ∡PCB, and since BC ∥ AD, ∡PCB = ∡PQA.
Hence ∡PSA = ∡PQA, so Q is also on the circle through R, A, S, P .

Therefore ∡RQC = ∡RQP = ∡RAP = ∡BAP = 60◦, so△RQC has two 60 degree angles and
so is equilateral.

Solution 3: First, we will deal separately with the cases when A, P , and Q are collinear, as well as
when C, D, and Q are collinear.

Note that if P lies on
←→
AQ, then Q = P , and it follows that ∠DAB = 60◦. Hence ∠ABC = 120◦, so

∠QBC = 120◦−∠PBA = 60◦. Since Q lies on
←→
AD, we know that B, C, and Q are not collinear, so

let R ̸= B be the second point where the circumcircle of△BCQ intersects
←→
AB (if it only intersects

at B, then AB is tangent to the circle, so as ∠QBA and ∠QCB both inscribe arc QB, it follows that
∠QCB = 60◦, so R = B will work). Then ∡CRQ = ∡CBQ = 60◦, and ∡RQC = ∡RBC = 60◦,
so it follows that△RQC is equilateral.

Next, if A = Q, then ∠BAC = 60◦. Therefore, if R is the intersection of the circle of radius AC

centered at A with
←→
AB such that ∠RAC = 60◦, then we find that △CQR is equilateral. It follows

that in all remaining cases, we may assume that A, Q, and P are noncollinear.

If Q lies on
←→
CD, then Q = D, and P lies on D. Thus the distance between AB and CD is equal

to the height of an equilateral triangle with base AB. It follows that if we construct an equilateral
triangle with base CD toward the interior of the parallelogram (where we know CD = AB), then
its third vertex R will lie on AB. Since Q = D, this yields equilateral △CQR. Otherwise, we may
assume that C, D, and Q are noncollinear.

Thus we can construct the circumcircle O1 of △APQ and O2 of △CDQ. If
←→
AB is tangent to O1,

then since ∡BAP = 60◦ and ∡AQP inscribes the same arc, then ∡AQP = 60◦.

A B

CD
P

Q

But as AQ ∥ BC, ∡BCP = ∡AQP = 60◦. Thus as ∡BAP = ∡BCP = 60◦, then A, B, P , and C
are concyclic. Therefore, ∡PCA = ∡PBA = 60◦. It follows that ∡QCA = ∡PCA = 60◦. Hence

6
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△QAC has two 60◦ angles, so it is equilateral, and R = A will work. Otherwise, let R be the second
point of intersection of line

←→
AB with O1. Then ∡PQR = ∡PAB = 60◦, since they both inscribe

arc PR.

A B

CD

PQ

R

Let R1 and R2 be the radii of O1 and O2, respectively. Note that sin∠AQP = sin∠CQD, because
the angles are supplementary. By the Extended Law of Sines,

2R1 =
AP

sin∠AQP
and 2R2 =

CD

sin∠CQD
.

Since CD = AB = AP , it follows that R1 = R2. Similarly, we note that ∠QAB and ∠CDA are
supplementary, so sin∠QAB = sin∠CDA. Thus by the Extended Law of Sines,

QR = 2R1 sin∠QAB and CQ = 2R2 sin∠CDA.

It follows that CQ = QR. Triangle△CQR is therefore isosceles with one angle equal to 60◦, and so
it is equilateral, as desired.

Solution 4: We use complex numbers.

Align AB with the real axis in the complex plane so that B lies at the origin and without loss of
generality, let A = 1. Draw the parallelogram so that CD lies above the real axis; since △ABP

is equilateral, this means P = ω, where ω = 1
2 +

√
3
2 i is a primitive sixth root of unity. Define

C = v ∈ C, so that D = 1 + v.

Consider the transformation of the complex plane that maps A to Q, B to C, and reflects △ABC
(this can be thought of as a dilation/scaling, followed by a reflection, a rotation, and a translation).
Note that these transformations all preserve angles. If we can show that this maps P to the real axis,
then we are done, as the transformation preserves equilateral triangles, hence ABP maps to a triangle
QCR with R ∈ R. A reflection can be represented by taking the conjugate of z, while rotation/scaling
can be represented by multiplying by a complex number; translation can be represented by adding a
complex number.

7
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Such a transformation can be written as z 7→ αz+ v, since it maps B = 0 to C = v. Since A maps to
Q we have Q = α · 1 + v = α+ v. By construction, Q should lie on both lines AD and CP , hence

Q−D

D −A
=

(α+ v)− (1 + v)

(1 + v)− 1
∈ R (1)

P − C

Q− C
=

ω − v

(α+ v)− v
∈ R (2)

Simplifying (1), α−1
v ∈ R so v = κ(α − 1) for some κ ∈ R. Simplifying (2), ω−v

α ∈ R so
ω−κα+κ

α ∈ R, hence

ω + κ

α
∈ R (3)

Finally, what we want to show is that P gets mapped to R, i.e.

αω + v = αω + κ(α− 1) ∈ R

This is true if and only if α(ω+κ) ∈ R; multiplying by (3) (which is a nonzero real number) we have

α(ω + κ) · ω + κ

α
= (ω + κ)(ω + κ),

which is a number times its complex conjugate, hence in R as desired.

Note: In fact, we didn’t use the fact that ω is a sixth root of unity. Thus, this shows that any triangle
ABP has a corresponding similar triangle with base CQ and with third point on line AB.

6. Solution 1a: Define a friendly number pair to be a pair of friendly numbers (r, s) with rr = ss. We
will first show that all friendly number pairs (r, s) with r < s have the form

(r, s) =

((
q − 1

q

)q

,

(
q − 1

q

)q−1
)

for some integer q ≥ 2. We then show that the former expression is strictly increasing and the latter
strictly decreasing, both converging to 1

e . Therefore, the second smallest friendly number is when
q = 3: (

2

3

)3

=
8

27
.

For the first part, we first prove the following lemma:

Lemma: Let x, y, a, b be positive rational numbers with xa = yb. Then there exists a positive rational
common base β and relatively prime positive integers m,n such that x = βm and y = βn.

Proof. WLOG assume a, b are positive integers by taking the power to get get rid of the denominator
in a and b. We may additionally assume WLOG that a, b are relatively prime by taking the root to
divide out any common factor. Then, writing the prime factorization as x =

∏
i p

xi
i and y =

∏
i p

yi
i

with xi, yi ∈ Z, we have that axi = byi for all i. Since a and b are relatively prime it follows that
there exists ni ∈ Z such that xi = bni and yi = ani. Since this is true for all i, letting β =

∏
i p

ni
i we

get x = βb and y = βa, so the lemma is proven.

8
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Applying the lemma to the problem statement, we get r = βm and s = βn for some rational β > 0
and relatively prime m,n ∈ N. Rewriting rr = ss, this gives

βmβm
= βnβn

=⇒ mβm = nβn.

Since m,n > 0,
βm−n =

n

m
.

Since m and n are relatively prime and the above is fully reduced, this implies equality of the numer-
ators and denominators; writing β = p

q (p, q > 0 and gcd(p, q) = 1) we get

n = pk,m = qk

where k = m− n ∈ Z; in other words

k = m− n = qk − pk.

Possibly swapping r and s, we may take k to be positive, hence q > p and we can factor

k = qk − pk = (q − p)(qk−1 + qk−2p+ · · ·+ qpk−2 + pk−1).

There are k terms in the second part of the RHS expression, and all terms are ≥ 1, so the only way
equality can hold is if q − p = 1 and all terms are 1, hence qk−1 = pk−1 = 1, implying k = 1 since
p = q = 1 violates q > p. Thus β = q−1

q , m = q, n = p, and getting back to our expressions for r
and s,

r = βm =

(
q − 1

q

)q

and s = βn =

(
q − 1

q

)q−1

.

Noting that r is smaller than s above, this shows r and s always have the desired form when r < s.
We check that any such r, s (for q ≥ 2) satisfy the original equation rr = ss, so this completely
describes the set of solutions.

To complete the problem, it remains to show that the second smallest is 8
27 . Letting r(q), s(q) denote

the expressions for r and s in terms of q (respectively), for q ≥ 2, we claim that

r(q) <
1

e
< s(q)

with r(q) strictly increasing and s(q) strictly decreasing. This implies the second smallest is r(3).

To show this we can use calculus. Taking the derivative:

d

dq
log

(
q − 1

q

)q−a

=
d

dq
(q − a) [log(q − 1)− log q] = log(q − 1)− log q +

q − a

(q − 1)q

9
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from which we get

d

dq
log r(q) = log(q − 1)− log q +

1

q − 1

d

dq
log s(q) = log(q − 1)− log q +

1

q
.

Now taking the second derivative,

d2

dq2
log r(q) =

1

q − 1
− 1

q
− 1

(q − 1)2

=
1

(q − 1)q
− 1

(q − 1)2

=
−1

(q − 1)2q

d2

dq2
log s(q) =

1

q − 1
− 1

q
− 1

q2

=
1

(q − 1)q
− 1

q2

=
1

(q − 1)q2
.

The former is strictly negative and the latter strictly positive, therefore r(q) is concave down and s(q)
concave up. Moreover, both r(q) and s(q) approach 1

e as q →∞, since(
q − 1

q

)q

=

(
1− 1

q

)q

→ e−1 =
1

e
.

A concave down function can only converge as q →∞ if it is decreasing, and a concave up function
only if it is increasing. Thus, the remaining claim is proven.

Solution 1b: We follow the approach above, but provide an alternate proof that r(n) < r(n+ 1) and
s(n+ 1) < s(n) for all integers n ≥ 2, where, as above,

r(n) =

(
n− 1

n

)n

and s(n) =

(
n− 1

n

)n−1

.

Applying AM-GM to n numbers 1− 1/n and 1, we get

(1− 1/n)n/(n+1) ≤ n(1− 1/n) + 1

n+ 1
= 1− 1

n+ 1
.

Raising this to the n+ 1 power, we find r(n) < r(n+ 1).

10
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On the other hand, applying AM-GM with (n− 1) numbers 1 + 1/(n− 1) and 1, we get

(1 + 1/(n− 1))(n−1)/n ≤ (n− 1)(1 + 1/(n− 1)) + 1

n
=

n+ 1

n
.

This can be written as
(

n
n−1

)n−1
<
(
n+1
n

)n, or rather
(

n
n+1

)n
<
(
n−1
n

)n−1. This can be written

as
(
1− 1

n+1

)n
<
(
1− 1

n

)n−1. Thereore s(n + 1) < s(n). This shows the same result as above,
without calculus.

Solution 2: Suppose rr = ss and assume without loss of generality that r > s. If x, y > 1, then
xy is increasing in both arguments, so xx is increasing for x ≥ 1, and clearly xx ≥ 1 on this range.
On the other hand, if x < 1, then xx < 1. All friendly numbers must therefore be between 0 and 1
(exclusive).

The equation rr = ss implies that rr/s = s; let u = r/s, so s = ru and u > 1. Again, rr = ss

implies rr = rur
u
. Since r ̸= 1, it follows that r = uru, i.e. u = r1−u. (In fact, since s = r/u, the

set of friendly numbers corresponds to the set of rational numbers u such that u1/(1−u) is rational.)

We know u > 1, so let v = u − 1; then v is a positive rational number. Let also q = r−1, so q is a
rational number greater than 1. Then qv = 1 + v.

Suppose that v = m/n with m,n relatively prime. Then qm/n = m+n
n , so m+n

n is a perfect mth

power of a rational. Clearly gcd(m + n, n) = gcd(m,n) = 1, so it follows that m + n and n are
both perfect mth powers of integers, i.e. n = jm, m + n = km for positive integers j < k. Assume
now that m ≥ 2. The function (x + 1)m − xm is a polynomial of positive degree m − 1 with only
positive coefficients, so it is increasing on x ≥ 0. Hence for x ≥ 1, (x + 1)m − xm ≥ 2m − 1. But
then (m+n)−n = m = km− jm ≥ 2m− 1, and this is impossible because 2m > m+1 for m ≥ 2
(by induction: it holds when m = 2, and if 2m > m+ 1, then 2m+1 > 2m+ 2 > m+ 2).

The only possibility remaining is m = 1, where v = 1/n, q1/n = 1 + 1
n , so q = (1 + 1

n)
n. Hence

r = 1/q = ( n
n+1)

n, u = v + 1 = n+1
n , and s = ru = ( n

n+1)
n+1. The algebra above implies that

rr = ss, and in fact

rr =

(
n

n+ 1

)rn

=

(
n

n+ 1

) nn+1

(n+1)n

=

(
n

n+ 1

)s(n+1)

= ss.

All friendly numbers are thus contained in this countably infinite family of pairs rn, sn. We claim

s1 < s2 < · · · < sn < · · · < rn < · · · < r2 < r1,

and since we already know that sn < rn, the ordering will follow upon showing that the sn increase
and the rn decrease.

Here it is possible to use calculus (see Solution 1), and the fact that the rn decrease is also an imme-
diate consequence of the well-known statement that (1 + 1

n)
n increases to e (in fact, the unique real

number that is smaller than all the rn and larger than all the sn is 1/e). Here we give another way to
prove the assertions without any calculus.

11
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We wish to prove that (1 + 1
n)

n is increasing and (after replacing n with n− 1) that (1− 1
n)

n is also
increasing. The binomial expansion gives(

1 +
1

n

)n

=
n∑

k=0

(
n

k

)
1

nk
=

n∑
k=0

1

k!

k−1∏
j=0

(
1− j

n

)
=

n∑
k=0

1

k!

k−1∏
j=1

(
1− j

n

)
.

For fixed j, the term 1− j
n is increasing in n, and the series for larger n also has more (nonnegative)

terms. Hence (1 + 1
n)

n is increasing in n.

A similar argument works with (1− 1
n)

n, but it is necessary to be more careful due to the fact that the
terms in the binomial expansion alternate in sign. Let 2g + 1 be the smallest odd integer greater than
or equal to n. We have(

1− 1

n

)n

=

2g+1∑
k=0

(
n

k

)
(−1)k

nk
=

g∑
i=0

[(
n

2i

)
1

n2i
−
(

n

2i+ 1

)
1

n2i+1

]
=

g∑
i=0

 1

2i!

2i−1∏
j=0

(
1− j

n

)
− 1

(2i+ 1)!

2i∏
j=0

(
1− j

n

) =

g∑
i=0

1

(2i)!

[
1− 1− 2i/n

2i+ 1

] 2i∏
j=0

(
1− j

n

)
=

g∑
i=0

1

(2i)!

2i

2i+ 1

[
1 +

1

n

] 2i∏
j=1

(
1− j

n

)
=

g∑
i=0

1

2i!

2i

2i+ 1

(
1− 1

n2

) 2i∏
j=2

(
1− j

n

)
.

Here again all terms involving n are increasing in n, and as n increases there may also be more
nonnegative terms. We have thus established that (1− 1

n)
n is increasing in n.

It follows that the second smallest friendly number is s2 = (23)
3 = 8

27 .

Note: This problem was similar to a problem that appeared on the USA Mathematical Talent Search
(USAMTS), Year 32 (2020-2021), Round 1, Problem 5.1 The problem writing committee regrets the
overlap.

1https://files.usamts.org/Problems_32_1.pdf
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