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1. If x is even then x2 + bx + c ≡ 0 + 0 + 1 = 1 mod 2, so it cannot be a root. If x is odd then
x2 + bx+ c ≡ 1 + b+ 1 ≡ b mod 2, so it cannot be a root unless b is even. Therefore in order for the
polynomial to have an integer root, b must be an even prime and thus equal to 2.

Next we write x2+2x+ c = (x+1)2+(c− 1), which is never zero for c ≥ 2, so c = 1 and x = −1.
Thus the only solution is (x, b, c) = (−1, 2, 1).

2. The three circles C1, C2, and C3 must have the same radius.

Suppose that we only draw circles D and E, marking the points where C1, C2, and C3 are tangent to
E as T1, T2, and T3, respectively. We also draw radii from the common center of D and E (call it O)
to T1, T2, and T3. Suppose that the radii intersect circle D at P1, P2, and P3, respectively.
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If we were to draw the tangent lines to circle E at T1, T2, and T3, then OT1, OT2, and OT3 would
be perpendicular to the tangent line. The same applies for the radii of circles C1, C2 and C3 drawn
to T1, T2, and T3, respectively. Hence the centers of C1, C2, and C3 must lie on OT1, OT2, and
OT3, respectively. Since the point of tangency between C1 and D must lie on the line connecting the
centers of the two circles, we see that P1 must be the point of tangency between the two circles. It
follows that P1T1 is a diameter of circle C1, and similarly, P2T2 and P3T3 are diameters of C2 and
C3, respectively. If the radius of E is R and the radius of D is r, then P1T1 = P2T2 = P3T3 = R−r,
so the three circles must have the same diameter, which implies that they must have the same radius.

Note: Our diagram is not to scale—it turns out that circle D needs to be smaller. In fact, if the radius
of circle D is 1, then C1, C2, and C3 must have radius 3 + 2

√
3, so E has radius 7 + 4

√
3. The

following picture shows a to-scale diagram.
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3. Solution 1: It is impossible to assign a number to each point in the plane such that the property is
true. Given any two distinct points A and B in the plane, let M be the midpoint of AB. We can
construct points C and D on the perpendicular bisector of AB, such that CM = MD = AM√

3
. Note

that4ACD and4BCD are congruent equilateral triangles.
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If such a function exists, then as4ACD and4BCD have the same perimeter, we know that

f(A) + f(C) + f(D) = f(B) + f(C) + f(D).

Hence f(A) = f(B) for all distinct points A and B, so f must be equal to a constant for all points in
the plane. If f(P ) = k for all points P in the plane, then it follows that f(P ) + f(Q) + f(R) = 3k
for every equilateral triangle PQR. Hence the perimeter of every equilateral triangle in the plane is
3k, an obvious contradiction. We conclude that the requested task is impossible.

Solution 2: Suppose for sake of contradiction that it is possible to make such an assignment. Let
PQR be an equilateral triangle with side length 2, and let A, B, and C be the midpoints of PQ, QR,
and RP , respectively.

Q B R

A C

P
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Note that 4PAC, 4QBA, 4RCB and 4ABC are equilateral triangles with side length 1. Then
f(P ) + f(Q) + f(R) = 6 and

(f(P ) + f(A) + f(C)) = 3

(f(Q) + f(B) + f(A)) = 3

(f(R) + f(C) + f(B)) = 3

(f(A) + f(B) + f(C)) = 3

Adding these equations, and subtracting f(P ) + f(Q) + f(R) = 6, we find

3 (f(A) + f(B) + f(C)) = 6.

which implies that f(A) + f(B) + f(C) = 2. But the perimeter of4ABC is 3, so

f(A) + f(B) + f(C) = 3,

and we have a contradiction. Thus no such assignment exists.

4. Solution 1: The answer is that Pc(2021) is a multiple of 3 if and only if c ≡ 2 mod 3.

First, scale the problem so that cows only have two legs and ostriches have one, and the number of
animals on day n is equal to the number of legs on day n − 1. Then, the number of animals Georgia
adds on day n is simply the number of cows on day n− 1, since they have one excess leg.

The possible numbers of cows on day 2 are c, c+ 1, c+ 2, . . . , 2c. Thus, we have the recursion

Pc(n) =
2c∑
i=c

Pi(n− 1)

for n ≥ 2, with the initial condition Pc(1) = 1 for all c.

We now claim that for all n ≥ 2 we have Pc(n) ≡ c + 1 (mod 3). We prove this by induction. The
base case is day 2, on which Georgia can add 0, 1, 2, . . . c cows, which gives c+ 1 possibilities. Now
suppose that Pc(n) ≡ c+ 1 (mod 3) for all c; we show that Pc(n+ 1) ≡ c+ 1 mod 3 as well.

Working mod 3, we have

Pc(n+ 1) ≡
2c∑
i=c

(i+ 1)

≡ c+ 1 +
2c∑
i=c

i

≡ c+ 1 +
2c(2c+ 1)

2
− c(c− 1)

2

≡ c+ 1 +
3c2 + 3c

2
≡ c+ 1 (mod 3).
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This completes the induction. It follows that Pc(2021) ≡ 0 (mod 3) if and only if c ≡ 2 (mod 3).

Solution 2: Extend Pc(n) to the case c = 0 for convenience (in this case there are 0 cows always, so
Pc(n) = 1 for all n). We first observe that for c ≥ 0, n ≥ 1, Pc(n) is equivalently the number of
sequences c1, c2, . . . , cn where c1 = 1 and ci+1 ∈ [ci, 2ci] for all i. Here ci is the number of cows on
day i, and the number of ostriches on day i is derived as 2ci−1 − ci.

Then for c ≥ 1 and n ≥ 1, we have the recurrence

Pc(n+ 1) = Pc−1(n+ 1)− Pc−1(n) + P2c−1(n) + P2c(n),

by the following bijection: take a sequence starting with c and subtract 1 from the first number. Either
it is a valid sequence starting with c− 1, or the second number is 2c− 1, or the second number is 2c.
In the first case, this covers all valid sequence starting with c − 1 other than those where the second
number is c− 1, so the number of such sequences is Pc−1(n+ 1)− Pc−1(n).

From the above recurrence, we now claim that Pc(n) ≡ c + 1 mod 3 for all n ≥ 2. (For n = 1,
Pc(1) = 1 so it doesn’t hold.) Induct on n. For the base case, Pc(2) counting valid sequences of
length 2, of which there are exactly c+ 1. For the inductive step, using the recurrence:

Pc(n+ 1) ≡ Pc−1(n+ 1)− (c) + (2c) + (2c+ 1) ≡ Pc−1(n+ 1) + 1,

and since P0(n+ 1) = 1, the result follows.

5. We claim that each player has a strategy that prevents them from losing, hence if both players play
optimally, then the game will go on infinitely. The strategy to prevent yourself from losing is simple:
if you have 0 or 1 stones on your turn, then gain a stone (this is forced); otherwise if you have n ≥ 2
stones, then always give away as many stones as possible (bn2 c) to the opponent.

We argue that this strategy works for Gog; the argument that it works for Magog is identical. Suppose
that it is our turn and we have not lost yet; then we have at most 19 stones, and after giving as many
as possible away (or gaining one in the case of 0 or 1), we will have at most 10 stones. Then either
the opponent loses immediately, or on their turn they can give us at most 9 stones. Since that leaves
us with at most 10 + 9 = 19 stones again on our turn, we do not lose and by induction, we can never
lose.

6. Let the prime factorization of n! be px1
1 px2

2 px3
3 · · · p

xk
k , where p1 = 2, p2 = 3, and so on are all the

prime numbers between 1 and n, inclusive. The number of divisors of n! is (x1 + 1)(x2 + 1)(x3 +
1) · · · (xk + 1).

We consider the following algorithm which assigns each value xi +1 with a distinct number between
1 and 2n. Visit the prime numbers in order, starting with p1 and ending with pk. For each pi, assign
(xi + 1) to a multiple of (xi + 1) that has not yet been assigned. Assuming such a multiple always
exists, in the end we have that each (xi + 1) divides the number it is assigned to, and the product of
all assigned numbers divides 1 · 2 · 3 · · · (2n− 1) · (2n) = (2n)!. Thus, it remains to show that at each
step there is a multiple of xi + 1 between 1 and 2n that is not assigned.
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The number of factors of pi going into n! is given by the formula

xi =

∞∑
j=1

⌊
n

pji

⌋
,

so it can be bounded above:

<
∞∑
j=1

n

pji
= n

(1/pi)

1− (1/pi)
=

n

pi − 1
.

Therefore,

xi + 1 <
n+ pi − 1

pi − 1
≤ 2n− 1

pi − 1
<

2n

pi − 1
,

which implies there are at least pi− 1 multiples of (xi +1) between 1 and 2n. On the other hand, the
number of primes so far (p1 through pi−1) is at most pi − 2, since 1 is not prime. So this completes
the proof that there is always a multiple of (xi + 1) available.
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