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1. Solution 1: We have
b2 ≥ c2 = a2 − ab+ b2 = a(a− b) + b2 ≥ b2,

and so we must have equality throughout. Thus b2 = c2, and a(a−b) = 0, so b = c and a = b, hence,
the triangle is equilateral. As we also have a + b + c = 1 we conclude that (a, b, c) = (13 ,

1
3 ,

1
3). We

check that this satisfies all three properties.

Solution 2: Let α, β, γ be the opposite angles to a, b, and c. By the Law of Cosines,

a2 − ab+ b2 = c2 = a2 + b2 − 2ab cos γ,

so cos γ = 1
2 and γ = 60◦. Also, it is a well-known fact that in a triangle, the longest side is opposite

the largest angle, and the shortest side is opposite the smallest angle. Since a ≥ b ≥ c, we deduce that
α ≥ β ≥ γ. Thus,

180◦ = α+ β + γ ≥ 3γ = 180◦,

and the equality implies α = β = γ = 60◦, so the triangle is equilateral. Hence (a, b, c) =
(
1
3 ,

1
3 ,

1
3

)
.

Solution 3: As in Solution 2, the Law of Cosines implies γ = 60◦. Then by the Law of Sines,
a ≥ b ≥ c implies sinα ≥ sinβ ≥ sin γ, hence sinα ≥

√
3
2 and sinβ ≥

√
3
2 , hence α ≥ 60◦ and

β ≥ 60◦. Since the α + β + γ = 180◦, it follows that α = β = γ = 60◦ so (a, b, c) =
(
1
3 ,

1
3 ,

1
3

)
as

before.

2. We claim that the area of P can be any number of the form n
2 , where n is a positive integer and

n ̸= 1, 3, 5.

First, note that if S consists of a 1× k block of unit squares, then it is already convex, and it has area
k. Thus every number of the form k = 2k

2 can be attained as the area of P . This implies that n = 2k
is achievable.

If n is odd, we observe that the areas of the smallest convex polygons containing the arrangements of
the following two groups of squares have areas 7

2 and 9
2 , respectively.

Note that for each arrangement, we can simply cut along the bolded line and add a 2× k block of unit
squares in the middle, which will add 2k to the area. This shows that areas of the form 7

2 +2k = 7+4k
2

and 9
2 + 2k = 9+4k

2 are attainable. It follows that n can be every odd integer greater than or equal to
7.

We claim that 1
2 , 3

2 , and 5
2 are not attainable as areas. Since we must use at least one unit square, then

the area of P is at least 1, so 1
2 is not attainable. Also, if we only use one unit square to construct P ,

then P will clearly only consist of that single unit square, which has area 1. Therefore to get an area
exceeding 1, we must use at least two unit squares, so the area of P will be at least 2. Hence 3

2 is not
attainable. If we use three or more unit squares, then the area is at least 3, so if 5

2 is attainable, then
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we must use exactly two unit squares to construct P . If the two squares are in the same row/column,
then P will be a 1 × k rectangle, and the area of P will be an integer. Thus we may assume that the
two unit squares are not in the same row/column. In this case, we can dissect P into one unit square
and two parallelograms as shown below.

If the second square is offset by (a, b) (where a, b ̸= 0), then the parallelograms have area |a| ≥ 1 and
|b| ≥ 1, and the area of the square is 1, so the area of P is at least 1 + 1 + 1 = 3. It follows that P
cannot have area 5

2 .

Thus the area of P can be anything of the form n
2 , where n is a positive integer and n ̸= 1, 3, 5.

3. Solution 1: Note that 210 = 1024, ending in 24, and 220 = 1048576. Also note that 24 · 76 ≡ 24
(mod 100).

For nonnegative integers k, let Pk = 210+20k. Then

Pk = 1024 · 1048576k ≡ 24 · 76k ≡ 24 (mod 100)

by induction on k. Hence it suffices to show that Pk begins with 20 for infinitely many k.

Decompose Pk in modified scientific notation as

Pk = ck · 10ek ,

where ek is an integer and 2.1 ≤ ck < 21. It is a well known fact that such a decomposition exists
and is unique. We wish to show that ck ≥ 20 infinitely often. We have

Pk+1 = 1048576 · Pk = (1.048576ck) · 10ek+6.

Now we split into two cases:

• If ck < 21
1.048576 then 1.048576ck < 21, so ck+1 = 1.048576ck.

• If ck ≥ 21
1.048576 then 21 ≤ 1.048576ck < 210 so ck+1 = 0.1048576ck.

Suppose for the sake of contradiction that ck ≥ 20 only finitely many times. Then there exists an
integer K such that ck < 20 for all k ≥ K. Note that 21

1.048576 > 21
1.05 = 20; hence for all k ≥ K, we

have ck < 21
1.048576 , so ck+1 = 1.048576ck. It follows that ck grows exponentially, and in particular

ck ≥ 21 for some k, contradicting our definition. Thus ck ≥ 20 infinitely often, and infinitely many
corresponding Pk begin with 20 and end with 24.

It can be computed that the three smallest such numbers are 2310, 21270, and 22250.
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Solution 2: By Euler’s totient theorem, 220 ≡ 1 mod 25. Also, 210 = 1024 ≡ 24 mod 100. Hence,
we consider numbers of the form 210+20k for all k ≥ 0. All such numbers are congruent to 24 both
mod 25 and mod 4, and hence satisfy the condition on the last two digits.

Now, the first two digits of 210+20k are 20 if and only if it lies in the interval [20 · 10n, 21 · 10n) for
some n; taking the log base 10, this is true if and only if

(10 + 20k) log 2 ∈ [n+ log 20, n+ log 21)

for some n, which rearranges to

(20 log 2) · k ∈
[
(n− 2) + log

2000

1024
, (n− 2) + log

2100

1024

)
,

i.e., we need to show that the fractional part of ka, where a = 20 log 2, is between log 2000
1024 and

log 2100
1024 for infinitely many k.

To complete the proof, it is a known fact that for any irrational number a, the fractional parts of ka
cover any subinterval of [0, 1) infinitely many times — for completeness, we include this fact as a
lemma below. Since log 2 is irrational, a is also irrational, and we can apply the lemma. In particular,
taking r = log 2000

1024 and s = log 2100
1024 , the fractional parts of ka cover the desired subinterval for

infinitely many choices of k.

Lemma: Let a be an irrational number and let 0 ≤ r < s ≤ 1. Then the fractional part of ka lies in
[r, s) for infinitely many k.

Proof of lemma: Let {x} denote the fractional part of x. First, we show that for any positive integer
n, we can always pick values of k such that {ka} lies in the interval (0, 1

n). To do this, we split (0, 1)
into subintervals of the form (0, 1

n), (
1
n ,

2
n), . . . , (n−1

n , nn) (since a is irrational, {ka} is never one of
the endpoints of these intervals). By the Pigeonhole Principle, if we take n+ 1 terms in the sequence
{ka}, then there exist two terms k1 < k2 such that {k1a} and {k2a} lie in the same subinterval. Thus
either 0 < {(k2 − k1)a} < 1

n or 1− 1
n < {(k2 − k1)a} < 1. We can pick n sufficiently large so that

1
n < s− r.

• If 0 < {(k2 − k1)a} < 1
n , then so long as t{(k2 − k1)a} < 1, the multiples {t(k2 − k1)a} =

t{(k2 − k1)a} will form an arithmetic sequence with common difference less than 1
n , and since

1
n < (s− r), clearly one of the terms {t(k2 − k1)a} must lie in (r, s).

• If 1 − 1
n < {(k2 − k1)a} < 1, then so long as (t − 1) < t{(k2 − k1)a} < t, we can say that

{t(k2 − k1)a} will form a decreasing arithmetic sequence where the common difference has
absolute value less than 1

n . Since 1
n < s− r, one of the terms {t(k2 − k1)a} must lie in (r, s).

In either case, we can find a positive integer k such that {ka} ∈ (r, s]. From here, if we ignore the
first k terms of the sequence, we can repeat the process, and we can do this forever, which gives us
infinitely many possible values of k.
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4. Solution 1: Let x1 = c, and let n = 1 in the second equation. We see xm = ym− c. Substituting into
our equations above, we see

ym+n = ymyn + c,

ymn = ym + yn − 2c.

In particular, letting m = n = 1 in the second equation, we have y1 = 2c. If c = 0 then by induction
xn = yn = 0 for all n. Otherwise, we compute

y2 = y21 + c = c(4c+ 1),

y3 = y1y2 + c = 2c2(4c+ 1) + c = c(8c2 + 2c+ 1), and

y4 − c = y1y3 = y22, so

2(8c2 + 2c+ 1) = (4c+ 1)2.

Expanding this last equality yields 16c2 + 4c + 2 = 16c2 + 8c + 1, and canceling like terms and
solving for c, we obtain c = 1

4 . In this case,

yn+1 =
1

2
yn +

1

4
,

and by induction, yn = 1
2 and xn = 1

4 for all n. Thus the only solutions are xn = 0 and yn = 0 for
all n ≥ 1, and xn = 1

4 and yn = 1
2 for all n ≥ 1.

Solution 2: Note that xn+1 = yny1 = yn−1y2 for n ≥ 2. Dividing the two equal expressions for
xn+1 (assuming they are nonzero), we find 1 = yny1

yn−1y2
. Hence yn

yn−1
= y2

y1
for all n ≥ 2. It follows

that yn must be a geometric sequence, say yn = arn−1 for all n ≥ 1. Also, as xn = yn−1y1 for all
n ≥ 2, we find xn = arn−1 · a = a2rn−1. Note that x1 can be any value in order to satisfy the first
equation, and it is easy to check that yn = arn−1 (for n ≥ 1) and xn = a2rn−1 (for n ≥ 2) and
x1 = k satisfies the first equation.

From the second equation with n = 1, we find that for m ≥ 2, ym = xm + x1, or arm−1 =
a2rm−1 + k. Thus k = arm−1(1 − a). If this is a constant for all m ≥ 2, then either a = 0, a = 1,
or else rm−1 does not change, in which case r = 0 or r = 1.

• If a = 0, then xn = yn = 0 for all positive integers n, and this satisfies the equation.

• If a = 1, then k = 0, so x1 = 0. Hence y2 = 2x1 = 0, but y2 = ar = r, so r = 0, which
implies that xn = yn = 0 for all n ≥ 2. But then y1 = x1 + x1 = 0, contradicting a = 1.

• If r = 0, then as above, xn = yn = 0 for n ≥ 2. Also, 0 = x2 = y21 implies that y1 = 0 and
y1 = 2x1 implies that x1 = 0, so both sequences are the zero sequence.

• If r = 1, then xn = a2 for n ≥ 2 and yn = a for n ≥ 1. Then y1 = 2x1 implies that a = 2x1,
so x1 = a/2. Then y3 = x1 + x2 implies that a = (a/2) + a2, so a2 − a/2 = 0. Hence
a(a − 1/2) = 0, so a = 0 or a = 1/2. We previously dealt with a = 0. If a = 1/2, then
yn = 1/2 for n ≥ 1 and xn = 1/4 for n ≥ 2, and x1 = a/2 = 1/4. Thus xn = 1/4 and
yn = 1/2 for all positive integers n. We can easily check that these sequences work.
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It follows that there are only two pairs of sequences: xn = yn = 0 for all n, or xn = 1/4 and
yn = 1/2 for all n.

5. We demonstrate a strategy for the red team where they will lose at most 2 matches, while winning at
least 332 matches. The strategy uses 13 team members, and is illustrated below:
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P
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R
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R

R

Without loss of generality (cycling the names of rock, paper, and scissors if necessary), we may
assume that the first blue player plays rock. The first red player might lose this matchup (depending
on their choice of rock, paper, or scissors), and they initially act somewhat naively: if the blue player
plays rock, then they pick the ”Rock Slayer,” who plays paper and will always defeat a player who
plays rock. The Rock Slayer picks themself if the blue team plays rock, so if the blue team does not
play paper or scissors, then the red team will win all future matchups. However, if the blue team plays
paper, then there is a tie, and it is known that the two players on the blue team play rock and paper, so
the Rock Slayer picks the Rock-Paper Captain to iron out a better strategy. Similarly, if the blue team
plays scissors, then the red team loses a match, and the Rock Slayer picks the Rock-Scissors Captain
to iron out a better strategy.

Now suppose that the red team knows that the blue team’s two players pick different items; without
loss of generality we may assume that they are rock and paper, so the Rock-Paper Captain will be
chosen. The Rock-Paper Captain chooses paper, which can never lose to either blue team player. If
the blue team plays rock, then the red team gains a point, and the Rock-Paper Captain picks themself
for the next round. If the blue team plays paper, then neither team gets a point, and the Rock-Paper
Captain responds by handing it off to the Rock-Paper Scout.
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• The Rock-Paper Scout also plays paper (so it cannot lose), but it learns how the blue team’s
paper player responds to a paper-paper tie. If the blue team picks rock, then the red team gains a
point, and the Rock-Paper Scout hands the next turn to the Rock-Paper Captain. If the blue team
picks paper, then the red team knows that the blue team’s paper player responds to a paper-paper
tie by picking paper. Hence the red team knows that the blue team will pick paper on the next
turn, so the Rock-Paper Scout hands the next turn to the Rock-Paper Sniper.

• The Rock-Paper Sniper plays scissors, which they know will beat the blue team’s paper, gaining
a point for the red team. Then the Rock-Paper Sniper hands the next turn to the Rock-Paper
Captain.

By following this process, the red team will score a point at least once every three turns, and the blue
team will never score a point beyond possibly 2 initial points.

In particular, there are 13 roles on the red team: Starter, Rock Slayer, Paper Slayer, Scissors Slayer,
and then a three person Rock-Paper team, a three person Paper-Scissors team, and a three person
Scissors-Rock team. Thus the red team can guarantee a victory against the blue team.

Note 1: It is also possible for the red team to win with just 9 players, by splitting them into three
teams, where the first team never loses to a blue team that never plays scissors, the second team never
loses to a blue team that never plays rock, and the third team never loses to a blue team that never
plays paper. The following diagram illustrates such a strategy.

Pstart P SRP Team

S S RPS Team

R R PSR Team

R

P

S

R
P

S

P
S

P

S

R

P
S

R

S
R

S

R

S
R

R

Note that each row functionally plays the same role as in our initial 13-person strategy. To see why this
works, it can be shown that if the blue team only plays a single object (i.e., rock, paper, or scissors),
then the red team will lose at most one match, while winning at least one out of every three of the
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remaining matches. We can also show that if during the course of the game, the blue team’s players
play two different objects, then they will eventually end up playing the appropriate team after winning
at most two matches (i.e., a blue team with a rock player and a paper player will play the RP team,
etc.).Then using the same reasoning as the 13-person strategy, we can show that the red team will
never lose another match, while winning at least one out of every three matches.

Note 2: The problem asks you to show that the red team can defeat the blue team by winning more
points in 1000 rounds. In fact, a stronger statement turns out to be true: with 20 players, the red team
can guarantee that, after a finite number of rounds, they win every round from that point on. However,
the writers are not sure of the minimum number of players required for either version of the problem.

6. Solution 1: First, we claim that the vertices of the Type A and Type B triangles can only be placed on
the triangular lattice below, where points on each row are 1 unit apart, and the rows are separated by
distance

√
3/2.

Note that the left edge of the rectangle has length
√
3, and it must be covered by edges of the triangles,

which have lengths 1 and
√
3. Clearly, the only way for it to be covered is if the

√
3 side of the Type

B triangle coincides with the left edge. The same must be true for the right edge of the rectangle.
Also, the bottom/top edges of the rectangle must be covered by a combination of sides of length 1 and√
3, so a + b

√
3 = n for some integers a and b. But if b ̸= 0, then

√
3 = n−a

b , which is rational, a
contradiction. Therefore, b = 0, which means that the bottom/top edges of the rectangle can only be
covered by sides of length 1, and in each case, it is easy to see that these triangles’ vertices will be on
the above lattice.

Next, consider a line between pairs of tiles. We claim that for each 1-1-
√
3 triangle placed with an

edge on the top or bottom of the rectangle, the
√
3 sides must match up exactly with

√
3 sides of other

triangles. Otherwise, suppose that there is a line where two sides do not exactly match up. If this
occurs, we can assume that one triangle “hangs” over the other triangle as shown below.

In order for the line to be fully covered on both sides, then any time one side “hangs” over the other,
then the other side must have an additional triangle. Since all lines in the board have finite length, this
cannot go on forever, so it follows that there is segment on the line where no hanging occurs—i.e., it
starts and ends at the same time on both sides of the line. If there are a segments of length 1 and b
segments of length

√
3 above, and c segments of length 1 and d segments of length

√
3 below, then

a+ b
√
3 = c+ d

√
3, and this is only possible if a = c and b = d.

Now suppose that one of the triangles placed along the top/bottom is a 1-1-
√
3 triangle, and extend

the line along its
√
3 side so it is bolded as shown below. If a

√
3 side is initially placed above this
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√
3 side (below left), then they can be thought of as covering two equilateral triangles, so it is as if

there is an equilateral triangle the comes up from the bottom. Otherwise, the top side of the bolded
line above the

√
3 side will initially be covered by a length 1 side. We observe that the intersection of

the bolded line with the board has length 2
√
3 ≈ 3.46. Since

√
3+ 2 > 3.46, it is impossible to place

three triangles (of which one must use a
√
3 side) along this line, so we can only place a

√
3 and a 1

side along this line, with the
√
3 sides offset as shown below on the right.

However, now the top side of the upper 1-1-
√
3 triangle must align with an edge of one of the re-

maining triangles. This top edge is (1 +
√
3)/2 ≈ 1.366 above the bottom of the rectangle, and the

altitudes of the triangles have lengths
√
3/2 and 1/2, so the top vertex of this additional triangle that

aligns with the top side of the upper 1-1-
√
3 triangle must extend at least (1 +

√
3)/2 + 1/2 ≈ 1.866

above the bottom edge of the rectangle. Since the rectangular board has height
√
3 ≈ 1.732, this will

extend off the board, so it cannot be a valid tiling. Thus every 1-1-
√
3 triangle that is placed along the

top/bottom triangle must be glued to a 1-1-
√
3 triangle along the

√
3 side, and it could be replaced

by two equilateral triangles. Placing a equilateral triangles along the top/bottom edges, we obtain
the following diagram, with holes that can be filled only by two equilateral triangles or two 1-1-

√
3

triangles (although if 1-1-
√
3 triangles are placed on the bottom/top line, the hole might be partially

or totally filled with an equilateral triangle at the top or an equilateral triangle at the bottom).

In each case, however, we see that the only ways that the holes can be filled with tiles is if every tile
must have all of its vertices placed on the triangular lattice.

Now let Tn be the number of tilings of the isosceles trapezoid of height
√
3/2 with bases of length n

and n− 1, and let Pn be the number of tilings of a parallelogram of length n and height
√
3/2.

Note that the top/bottom edges must be covered by edges of length 1, and by our previous argument,
any 1-1-

√
3 triangle with a 1 edge along the top/bottom must be glued to a second 1-1-

√
3 triangle

along the
√
3 side. Thus we can instead think of this as tiling with equilateral triangles of side length

1 and parallelograms that cover two such equilateral triangles. To compute Tn, we note that the tiling
can end in an equilateral triangle, in which case the rest of the board can be tiled in Pn−1 ways, or it
can end in a parallelogram, in which case the rest of the board can be tiled in Tn−1 ways. Thus

Tn = Pn−1 + Tn−1. (1)

8
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To compute Pn, we note that the tiling can end in an equilateral triangle, in which case the board can
be tiled in Tn ways, or it can end in a parallelogram, in which case the board can be tiled in Pn−1

ways. Hence
Pn = Tn + Pn−1. (2)

From (1), we find Pn−1 = Tn − Tn−1, which we substitute into (2) to find Tn+1 − Tn = Tn + (Tn −
Tn−1). Hence Tn+1 = 3Tn − Tn−1, where T1 = 1 and T2 = 3. It’s not hard to show that Tn = F2n,
the 2nth Fibonacci number, because T1 = F2, T2 = F4, and

F2n = F2n−1 + F2n−2 = (F2n−2 + F2n−3) + F2n−2 = 2F2n−2 + F2n−3.

Then F2n−3 = F2n−2 − F2n−4, so F2n = 3F2n−2 − F2n−4, so F2n and Tn satisfy the same initial
conditions and recurrence relation, so they must be equal by induction.

Let xn be the number of tilings of the n-board. Then we know that all triangles have vertices on our
triangular grid. As mentioned above, each tile with an edge along the top/bottom edge must either
come as an equilateral triangle, or as two 1-1-

√
3 triangles glued together to form a parallelogram,

and this can create partial tilings shown below.

Consider the unshaded parallelograms in the diagram on the right. If left uncovered by the top/bottom
edge triangles, it can either be covered by two 1-1-

√
3 triangles with the

√
3 sides coinciding with

the vertical diagonal of the parallelogram, or it can be be covered by two equilateral triangles whose
edges coincide with the horizontal diagonal of the parallelogram. On the other hand, the parallelogram
could also have its top or bottom equilateral triangle be covered by 1-1-

√
3 triangles emanating from

the top/bottom edges (as shown above on the right), in which case the horizontal diagonal of the
parallelogram will coincide with one of the edges of the tile. However, in every case, each unshaded
parallelogram must have exactly one of its diagonals coincide with an edge of a tile. If the vertical
diagonal appears as an edge of a tile, then it cuts the grid into two smaller rectangular grids. In
particular, if we do casework based on the first time a vertical diagonal appears, then prior to the first
vertical diagonal, only horizontal diagonals can appear. If the rectangle prior to the first vertical edge
has length k, then the top and bottom regions are trapezoids of length k, and each space can be tiled
in Tk ways. It follows that for n ≥ 1,

xn = T 2
1 · xn−1 + T 2

2 · xn−2 + T 2
3 · xn−3 + · · ·+ T 2

n · x0, (3)

where by convention, x0 = 1.

We claim that T 2
n satisfies the recurrence

T 2
n = 8T 2

n−1 − 8T 2
n−2 + T 2

n−3. (4)

9
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Recall that Tn = 3Tn−1 − Tn−2, so T 2
n = 9T 2

n−1 − 6Tn−1Tn−2 + T 2
n−2. Applying the recurrence

repeatedly, we find

T 2
n = 9T 2

n−1 − 6Tn−1Tn−2 + T 2
n−2

= 9T 2
n−1 − 6Tn−1 ·

(
Tn−1 + Tn−3

3

)
+ T 2

n−2

= 7T 2
n−1 − 2Tn−1Tn−3 + T 2

n−2

= 7T 2
n−1 − 2(3Tn−2 − Tn−3)Tn−3 + T 2

n−2

= 7T 2
n−1 + T 2

n−2 + 2T 2
n−3 − 6Tn−2Tn−3

= 7T 2
n−1 + T 2

n−2 + T 2
n−3 + (3Tn−2 − Tn−1)

2 − 6Tn−2Tn−3

= 8T 2
n−1 + 10T 2

n−2 + T 2
n−3 − 6Tn−2(Tn−1 + Tn−3)

= 8T 2
n−1 + 10T 2

n−2 + T 2
n−3 − 18T 2

n−2

= 8T 2
n−1 − 8T 2

n−2 + T 2
n−3

This proves (4). We can use (4) this on iterations of (3):

xn = T 2
1 · xn−1 + T 2

2 · xn−2 + T 2
3 · xn−3 + T 2

4 · xn−4 + · · ·+ T 2
n · x0

−8(xn−1 = T 2
1 · xn−2 + T 2

2 · xn−3 + T 2
3 · xn−4 + · · ·+ T 2

n−1 · x0)
+8(xn−2 = T 2

1 · xn−3 + T 2
2 · xn−4 + · · ·+ T 2

n−2 · x0)
−(xn−3 = T 2

1 · xn−4 + · · ·+ T 2
n−3 · x0).

Note that this assumes that n− 3 ≥ 1, i.e., n ≥ 4. Adding these, we find

xn − 8xn−1 + 8xn−2 − xn−3 = xn−1 + xn−2.

Therefore, for all n ≥ 4,
xn = 9xn−1 − 7xn−2 + xn−3.

To compute the initial conditions, we can use the fact that T1 = 1, T2 = 3, and T3 = 8, as well as
x1 = 1 and equation (3) to show x2 = 12 · 1 + 32 · 1 = 10 and x3 = 12 · 10 + 32 · 1 + 82 · 1 = 83.
Solution 2: As in Solution 1, we assume that all tiles are placed such that they have vertices on the
triangular grid.

Let xn be the number of tilings of the n-board. Let yn be the number of tilings of boards of the type

where the top edge has length n. Let zn be the number of tilings of boards of the type

10
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where the top and bottom edges have length n. Note that xn is also the number of ways to tile an
n ×

√
3 rectangle if we remove a Type B triangle whose

√
3 side coincides with the left side of the

board, because any tiling of an n ×
√
3 rectangle must start by placing a Type B triangle in this

position.

In the below diagram, the first, second, and third columns represent the different ways that tilings can
start for xn, yn, and zn.

yn

xn−1

yn−1

xn−1

zn−1

yn−1

xn−1

xn

xn

yn

yn

zn−1

For xn (the first column), we note that the left edge is always covered by a Type B tile. If the left-most
edge on the bottom is covered by a Type A tile, we get the first case (yn tilings). Otherwise, it must
be covered by a Type B tile, which must be paired with another Type B tile to form a parallelogram.
Next, the left edge on the top is either covered by a Type B triangle, paired with another Type B
triangle to form a parallelogram (xn−1 tilings), or it is covered by a Type A triangle. After placing
this, the left-most empty space can either be covered by two Type B triangles (yn−1 tilings) or a Type
A triangle (xn−1 tilings). Hence

xn = 2xn−1 + yn + yn−1. (1)

For yn (the second column), we see that the top left edge can either be covered by a Type A triangle
(zn−1 tilings), or a Type B triangle, paired with another Type B triangle to form a parallelogram. In

11
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this latter case, the left-most empty space can either be covered by two Type B triangles (yn−1 tilings)
or a Type A triangle (xn−1 tilings). Hence

yn = xn−1 + yn−1 + zn−1. (2)

For zn (the third column), we see that the left-most vertex can either be covered by the 120◦ angle
in a Type B triangle, or else the horizontal edge emanating from this vertex will be uncovered. From
there, we do casework based on the tiles above and below this horizontal edge: either A and A (xn
tilings), B and A (yn tilings), A and B (yn tilings), or B and B (zn−1 tilings). Hence

zn = 2xn + 2yn + zn−1. (3)

Substituting (2) into (1), we find

xn = 3xn−1 + 2yn−1 + zn−1. (4)

We can use (2) and (4) to iterate the right hand side of (3), finding

zn = 2(3xn−1 + 2yn−1 + zn−1) + 2(xn−1 + yn−1 + zn−1) + zn−1

= 8xn−1 + 6yn−1 + 5zn−1. (5)

Thus equations (2), (4), and (5) all have similar forms.

Now if we substitute (5) and (2) into (4), we find

xn = 3xn−1 + 10xn−2 + 8yn−2 + 7zn−2. (6)

By (4), we know that xn−1−3xn−2 = 2yn−2+zn−2. Multiplying this by 4, we find 8yn−2+4zn−2 =
4xn−1 − 12xn−2. Substituting this into (6), we find

xn = 3xn−1 + 10xn−2 + (4xn−1 − 12xn−2) + 3zn−2

= 7xn−1 − 2xn−2 + 3zn−2. (7)

Now suppose that we write (7) for n and n − 1, and then we subtract twice the latter equation. We
find

xn = 7xn−1 − 2xn−2 + 3zn−2

−2(xn−1 = 7xn−2 − 2xn−3 + 3zn−3)

xn − 2xn−1 = 7xn−1 − 16xn−2 + 4xn−3 + 3(zn−2 − 2zn−3). (8)

Subtracting 3 times (4) from (5), we find zn − 3xn = −xn−1 + 2zn−1. Therefore, zn − 2zn−1 =
3xn − xn−1. In particular, it follows that zn−2 − 2zn−3 = 3xn−2 − xn−3. Substituting this into (8),
we find

xn − 2xn−1 = 7xn−1 − 16xn−2 + 4xn−3 + 3(3xn−2 − xn−3).

12
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Collecting like terms, we find
xn = 9xn−1 − 7xn−2 + xn−3.

Remark: One can alternatively use methods from linear algebra to derive the recurrence if we write
the equations (2), (4), and (5) in matrix form asxn

yn
zn

 =

3 2 1
1 1 1
8 6 5

xn−1

yn−1

zn−1

 .

Thus if A =

3 2 1
1 1 1
8 6 5

, then we can diagonalize A as A = XΛX−1, where Λ is a diagonal matrix

whose entries are the eigenvalues of A. (An eigenvalue is a number λ such that the equation Av = λv
has a solution for a non-zero vector v.) Using this representation, we getxn

yn
zn

 = An−1

x1
y1
z1

 = XΛn−1X−1

x1
y1
z1

 .

Since X , X−1, and (x1, y1, z1) are constant matrices, it follows that xn, yn, and zn are linear combi-
nations of λn−1

1 , λn−1
2 , and λn−1

3 , where λ1, λ2, and λ3 are the eigenvalues of A. Next, to calculate the
eigenvalues of A, these are the roots of the characteristic polynomial of A, given by det(A−λI) = 0.
We find∣∣∣∣∣∣
3− λ 2 1
1 1− λ 1
8 6 5− λ

∣∣∣∣∣∣ = (3− λ)((1− λ)(5− λ)− 6)− 2((5− λ)− 8) + (6− 8(1− λ)) = 0.

This simplifies to −λ3 + 9λ2 − 7λ+ 1 = 0. We further modify this to the form λ3 = 9λ2 − 7λ+ 1.
By the theory of linear homogeneous recurrence sequences, any sequence that is a linear combination
of λn−1

1 , λn−1
2 , and λn−1

3 satisfies the linear recurrence whose coefficients match the coefficients of
the characteristic polynomial, so xn satisfies the recurrence

xn = 9xn−1 − 7xn−2 + xn−3.

(The same recurrence is satisfied by yn and zn.)

13


