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1. Scarlett will win if she uses the following strategy:

• On the first turn, Scarlett selects the center square.
• On each subsequent turn, if Indigo selects square X in her turn, then Scarlett selects the square

that is a 180◦ rotation about the center square.

We claim that if Scarlett follows this strategy, then she will always be able to make a move on her
turn. After Scarlett’s first turn, the board looks like this:

Notice that the board has a 180◦ symmetry: if a square is painted, then its 180◦ rotation is also painted,
and vice versa. Additionally, the only squares X whose 180◦ rotations lie in the same row or column
are the squares X in the center row or center column, which are already painted. Since Indigo cannot
play in any of these squares, her move will necessarily allow Scarlett to select the 180◦ rotation of X
on her turn.

This means that after Scarlett’s turn, the symmetry of the board is preserved, since the squares that she
paints are exactly the 180◦ rotations of the squares that Indigo painted. Therefore, Scarlett’s strategy
continues to work after each of Indigo’s turns. Since only a finite number of moves can be made, it
follows that the game must end with Indigo unable to make a move, and Scarlett wins.

2. The answer is N = 2 and the possibilities are A = 33 and A = 34.

Note that A/99 can be written as a repeating decimal with two-digit blocks, each of which are equal
to A. For instance, 37/99 = 0.373737 . . . . However, 99/99 = 1.000 . . . . Thus, if Abigail tells Chris
a first digit C after the decimal point of A/99, then Chris will be able to list 10 possibilities for A
unless C = 9, in which case Chris can only list the nine possibilities A = 90, 91, . . . , 98. Therefore,
when Bruno is told the first digit B of A/11, he must know that A is not any of 90, 91, . . . , 98.
Since A+11

11 = A
11 + 1 has the same first digit after the decimal point as A

11 , it follows that the digit
B only depends on the value of A modulo 11. In particular, if A ≡ 0, 1 (mod 11), then B = 0,
while if A ≡ k (mod 11) for 2 ≤ k ≤ 10, then B = k − 1. Note that A = 90, 91, . . . , 98 give
B = 2, 3, . . . , 10, respectively, which all must be impossible as otherwise Bruno could not deduce
that Chris can narrow A down to 10 possibilities. Therefore, A ≡ 0 or A ≡ 1 mod 11, and B = 0.

Following the logic in the above paragraph, Chris deduces that B = 0, and thus that A ≡ 0 or A ≡ 1
(mod 11). For each possible value of C, we now list possible values of A which are 0 or 1 mod 11:
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C Possible values for A
0 1, 99
1 11, 12
2 22, 23
3 33, 34
4 44, 45
5 55, 56
6 66, 67
7 77, 78
8 88, 89

It remains to check for which of these cases all values for A are the product of two distinct primes.
The only row satisfying this criteria is C = 3, with A = 33 = 3 · 11 or A = 34 = 2 · 17. Therefore,
C = 3, N = 2, and either A = 33 or A = 34.

3. We claim the answer is 90◦. This is achievable when PQRS is a square.

To show that this is minimal, let C be the convex closure of P , Q, R, S. (The convex closure of a
set of points is the smallest convex polygon containing those points.) If C is a quadrilateral, then its
internal angles add up to 360◦, so there must be at least one angle greater than or equal to 90◦. If any
three points are collinear, then the angle between those three points is 180◦. Otherwise, without loss
of generality, say S lies inside triangle PQR. Then angles PSQ, QSR, and RSP add up to 360◦,
and are all less than 180◦. So one of them is at least 120◦.

4. There are 83 possibilities for Daniel’s function. We consider the following three cases:

Case 1: m = 0. If Daniel’s function is the last function to be pulled out of the hat, the final answer
will be 0 · x + b = b. Therefore, we must have b = 1. Additionally, m = 0 and b = 1 is
achievable, because if everyone’s function is the constant function f(x) = 1, the end result will
always be 1. So there is 1 possibility in this case.

Case 2: m ≥ 1 and b = 0. Suppose that the other nine functions are g1, g2, . . . , g9. If we apply the
functions in the order f, g9, g8, . . . , g1, then since f(0) = m · 0 = 0, we obtain

g1(g2(· · · g9(f(0)) · · · )) = g1(g2(· · · g9(0) · · · )) = 1.

But if we apply the functions in the order g9, g8, · · · g1, f , then we obtain

f(g1(g2(· · · g9(0) · · · ))) = f(1) = m · 1 = m.

Therefore we must have m = 1. Additionally, m = 1 and b = 0 is achievable by letting
f(x) = x and gi(x) be the constant function 1 for all i. So there is also 1 possibility in this case.

Case 3: m, b ≥ 1. We claim that we can pick nine other functions such that if the functions are
applied in any order, then the end result is always 1. We will define everyone’s function to be the
same function g, which will be based off of Daniel’s favorite function. To show how we arrive at
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g, first imagine that everyone’s favorite function was Daniel’s favorite function, that is, g = f .
Then we get:

f(0) = b

f2(0) = bm+ b

f3(0) = bm2 + bm+ b

...

f10(0) = bm9 + bm8 + · · ·+ bm+ b.

Note that this is a strictly increasing sequence of positive integers. But f10(0) does not take us
back to 1. So rather than using g = f , we use the slightly modified

g(x) =


1−b
m if x = f8(0)

1 if x = f9(0)

f(x) otherwise.

Since f and g do the same things to 0, f(0), f2(0), . . . , and f7(0) (and since all of these are
distinct numbers), we can assume that after 8 functions have been pulled out of the hat, 0 has
been turned into f8(0). After this, we find:

• If Daniel’s function is picked next, then the next value is f9(0), and then g(x) is picked,
last, so the final value is g(f9(0)) = 1.

• If g is picked next, then the next value is g(f8(0)) = 1−b
m , so the final value is f

(
1−b
m

)
=

m · 1−b
m + b = 1.

In either case, the final value is 1, so if m, b ≥ 1, then we have shown that f(x) = mx+ b could
possibly be Daniel’s function. Therefore, this case has 9 · 9 = 81 possibilities.
Note: There are other choices for g that work; for example, we can take

g(x) =

{
1−b
m if x ≤ 0

1 if x > 0.

In summary, we have demonstrated that (m, b) can be (0, 1), (1, 0), or we can have m, b ≥ 1, for a
total of 1 + 1 + 92 = 83 functions.

5. The optimal strategy is to roll one die and keep it only if it is a 6, and if not to roll the other 2022 dice
and keep the maximum of those. Call this strategy (∗).

First, Noureddine should only divide the dice into two piles; if he divides them into three piles with
A,B, and C dice, then he can do at least as well with piles of A + B and C dice by making the
same decision (keep or discard) after seeing the A + B dice that he would by seeing the A and B
dice separately, and maybe he can do better by seeing more information at once. The same argument
applies to any number of piles greater than 3, so we may assume there are only two piles.
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Let the two piles have sizes A and B, where A + B = 2023. Let E(N) be the expected value of
the maximum of N dice. For example, E(1) = 3.5. If A is fixed, then Noureddine’s best strategy
is to roll the first pile, keep the maximum if it’s greater than E(B), and otherwise roll and keep the
maximum of the second pile. Additionally, we expect that E(N) should quickly approach 6 as N gets
large, as it is very likely to roll at least one 6. Concretely, E(N) is given by the formula

E(N) = 6− 5N + 4N + 3N + 2N + 1

6N
,

where this formula computes the maximum by subtracting one at a time:
(
5
6

)N is the probability that

all dice are at most 5,
(
4
6

)N is the probability that all dice are at most 4, and so on. Observe that
(5/6)N , (4/6)N , . . ., (1/6)N are all decreasing functions of N , so when they are subtracted from 6,
it follows that E(N) is an increasing function of N . Using this formula, the first few values of E(N)
are

E(1) = 6− 15

6
= 3 +

1

2

E(2) = 6− 55

36
= 4 +

17

36

E(3) = 6− 225

216
= 4 +

207

216

E(4) = 6− 979

1296
= 5 +

317

1296
.

We first consider the case B ≥ 4, i.e., A ≤ 2019. Since E(B) ≥ 5, Noureddine keeps one of the A
dice only if he rolls a 6. Comparing this strategy to (∗), we notice that both strategies score 6 if any
of the dice are a 6. However, given that all the dice are 5 or fewer, Noureddine’s expected score for
(∗) is E(2022), whereas his expected score for A ≥ 2 is E(2023 − A) < E(2022). Therefore, this
case is not optimal unless A = 1.

It then remains to consider the case where B < 4, i.e. A ≥ 2020. In this case, E(B) < 5. We claim
that this case is not optimal either, by again comparing to what happens if strategy (∗) is applied to
the same dice.

• If there is a 6 among the A dice, then both strategies score 6.

• If there is a 6 among the B dice but not among the A dice, and the maximum of the A dice is
exactly 5, then strategy (∗) scores at least 1 higher. This happens with probability((

5

6

)A

−
(
4

6

)A
)(

1−
(
5

6

)B
)

>

(
5A − 4A

6A

)
· 1
6

since B ≥ 1.

• Finally, if there are no 6s, then strategy (∗) might score better, the same, or worse. But it only
scores worse if the first die is less than 6, strictly larger than all other dice, and good enough to
keep (above f(B), which is at least 3.5). So the first die must be a 4 or 5, and the last 2022 dice
must be 1, 2, 3, or 4. This happens with probability at most 2

6

(
4
6

)2022, and the amount that it
scores worse is at most 4.
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In total, the expected advantage of strategy (∗) over the candidate strategy is at least(
5A − 4A

6A

)
· 1
6
− 4 · 2

6
·
(
4

6

)2022

=
5A6B − 4A6B − 12 · 42023

62024
.

Since 42023 = 4A+B < 4A6B , dividing out by 6B the numerator is at least 5A − 13 · 4A, which is
positive since A ≥ 16. Specifically,

(
5
4

)4
= 625

256 > 2, so
(
5
4

)A ≥
(
5
4

)4·4
> 24 = 16 > 13.

In summary, we have shown that it cannot be optimal to divide into two piles A,B (with B < 4), nor
can it be optimal to divide into two piles A,B with B ≥ 4 and A ≥ 2. Therefore, the only remaining
case is A = 1 and B = 2022, so strategy (∗) is optimal.

6. We prove that there are only four such operations x | y: max(x, y), min(x, y), first(x, y) = x, and
last(x, y) = y.

In the following lemmas, we first show idempotence x | x = x, with some work. Then we look at
chains of sums of (0 | 1) to find 0 | n = n(0 | 1), and finally we determine that (0 | 1) is either 0 or 1.
Combining this with the symmetric observation that (1 | 0) is either 0 or 1 will give us the four cases.

Lemma 1: x | x = x.

Since x | x = x + (0 | 0), it suffices to show 0 | 0 = 0. Consider the map ϕ : Z+ → Z (where Z is
the integers and Z+ is the positive integers) defined by ϕ(n) = 0 | 0 | · · · | 0︸ ︷︷ ︸

n zeros

. Then we claim

ϕ(mn) = ϕ(m) + ϕ(n).

This is by rewriting the right-hand side as

0 | 0 | · · · | 0︸ ︷︷ ︸
m

+ϕ(n) = ϕ(n) | · · · | ϕ(n)︸ ︷︷ ︸
m

and expanding. In particular, we have that ϕ(pa) = aϕ(p) for any prime p.

Now we claim that ϕ(x) = ϕ(y) for some 0 ≤ x < y. If ϕ(p) = 0 for any prime, then ϕ(1) = ϕ(p).
Otherwise, there must be primes p1 and p2 such that ϕ(p1) and ϕ(p2) have the same sign. Examining
ϕ(pa1) = aϕ(p1) and ϕ(pb2) = bϕ(p2), we see that we can choose a, b > 0 to make these equal: in
particular, a = |ϕ(p2)| and b = |ϕ(p1)|.
To complete the proof of Lemma 1, ϕ(x) = ϕ(y) implies that ϕ(n) is periodic for n sufficiently large,
since ϕ(n) = ϕ(n − x) | ϕ(x) = ϕ(n − x) | ϕ(y) = ϕ(n − x + y), and hence bounded. But
ϕ(2a) = aϕ(2) is not bounded unless ϕ(2) = 0, so ϕ(2) = 0 | 0 = 0, and in fact, ϕ(n) = 0 for all n.

Lemma 2: For n ≥ 0, 0 | 1 | · · · | n = n(0 | 1).
Proof by induction:

0 | 1 | 2 | · · · | n | (n+ 1) = 0 | (1 | 1) | (2 | 2) | · · · | (n | n) | (n+ 1) by Lemma 1

= (0 | 1) | (1 | 2) | · · · | (n | (n+ 1))

= (0 + (0 | 1)) | (1 + (0 | 1)) | (2 + (0 | 1)) + · · ·
= (0 | 1 | · · · | n) + (0 | 1).
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Lemma 3: For n ≥ 0, 0 | n = n(0 | 1).
Note that:

(0 | n) + (0 | 1 | 2 | ... | n) = (0 + (0 | 1 | 2 | ... | n)) | (n+ (0 | 1 | 2 | ... | n))
= 0 | 1 | 2 | ... | (2n) by Lemma 1: n | n = n

Applying Lemma 2, (0 | n) + n(0 | 1) = 2n(0 | 1), and the result follows.

Lemma 4: (0 | 1) ∈ {0, 1}.

Let k = (0 | 1). By idempotence, 0 | 1 = 0 | 0 | 1 | 1, and we consider different ways to evaluate this
associatively. First, (0 | 1) | 1 = k | 1, and second, 0 | (0 | 1) = 0 | k. Thus,

k = k | 1 = 0 | k

Now we have two cases. If k ≥ 0, then

0 | k = k(0 | 1) = k2,

so k = k2 and k ∈ {0, 1}. Second, if k < 0, then subtracting k from k = k | 1 we get

0 = (k − k) | (1− k) = 0 | (1− k) = (1− k)(0 | 1) = (1− k)k

so again k = 0 or k = 1 (actually a contradiction since k < 0), and we are done.

Putting things together: All of lemmas 2-4 can be proven identically for the symmetric case of b | a
instead of a | b, from which we get that 1 | 0 ∈ {0, 1}. So there are two cases for 0 | 1 and two cases
for 1 | 0. Together with Lemma 3 we can then calculate m | n for any m,n:

m | n =

{
m+ (0 | (n−m)) = m+ (n−m)(0 | 1) if n ≥ m

n+ ((m− n) | 0) = n+ (m− n)(1 | 0) if m ≥ n.

In particular:

• If 0 | 1 = 1 | 0 = 1, this gives the max operation max(x, y).

• If 0 | 1 = 1 | 0 = 0, this gives the min operation min(x, y).

• If 0 | 1 = 0 and 1 | 0 = 1, this gives the function first(x, y) = x.

• Finally, if 0 | 1 = 1 and 1 | 0 = 0, this gives the function last(x, y) = y.

It’s easy to verify that each of these operations satisfy the given two properties, so these are the only
four possible binary operations.
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