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1. Solution 1: Suppose that we place each square sequentially, so that the bottom left square is placed
first. We place n − 1 additional squares, moving up and right by the same amount at each step. The
final square is placed 1 unit up and 1 unit to the right of the initial square, so each new square is placed
1

n−1 units up and 1
n−1 units to the right of the previous square.

Therefore, when we place each new square, the area of overlap with the previous square is a square
with side length 2− 1

n−1 , so the newly added area is

22 −
(
2− 1

n− 1

)2

=

(
4− 1

n− 1

)
· 1

n− 1
.

Since there are n− 1 new squares added, the total area of the region is

22 + (n− 1) ·
((

4− 1

n− 1

)
· 1

n− 1

)
= 8− 1

n− 1
.

Thus we wish to find the smallest positive integer n ≥ 2 such that 8− 1
n−1 ≥

√
63. This is equivalent

to 8 −
√
63 ≥ 1

n−1 , so n − 1 ≥ 1
8−

√
63

. Multiplying by 8+
√
63

8+
√
63

, we find n − 1 ≥ 8 +
√
63. Hence

n ≥ 9 +
√
63. The smallest such integer n is 17 .

Solution 2: First, we extend the sides of the first and last squares, which shows that the region can be
contained in a square of side length 3. Let A = (−1, 1), B = (0, 1), C = (0, 2), and D = (−1, 2).
The top-left vertices of the 2× 2 squares will all lie on AC as shown below.

A B

CD

To find the area covered by the figure, we start with the 3 × 3 square with area 3 · 3 = 9. From this,
we subtract the area of △ACD and its counterpart in the lower right hand corner, obtaining an area of
9− 2

(
1·1
2

)
= 8. In △ABC, we must further subtract n− 1 small congruent isosceles right triangles.

Since their leg lengths add up to 1, the leg length of each of these excluded triangles is 1
n−1 . The

areas of these small triangles sums to (n− 1) · (1/(n−1))2

2 = 1
2(n−1) . Since we must subtract the same

amount in for the region in the lower right hand corner, it follows that the total area covered by the
paper is 8− 2 · 1

2(n−1) = 8− 1
n−1 . As in Solution 1, the smallest integer n for which 8− 1

n−1 >
√
63

is 17 .
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2. Solution 1: The problem is equivalent to showing there are no primes p dividing both x2 + xy + y2

and x2 + 3xy + y2. If p is such a prime, then p divides their difference, which is 2xy. Hence either
p = 2, p divides x, or p divides y. Without loss of generality, either p = 2 or p divides x.

• If p = 2, then x2 + xy + y2 must be even. However, since x and y are coprime, they cannot
both be even. If both x and y are odd, then x2 + xy + y2 is odd, and if one of x, y is even and
the other is odd, then x2 + xy + y2 is also odd. Therefore, it is impossible for x2 + xy + y2 to
be even, contradiction.

• If p divides x, then since p divides x2 + xy+ y2 and x2 + xy, p divides the difference y2. Since
p is prime, it follows that p divides y. But this contradicts the fact that x and y are coprime.

Since both cases lead to a contradiction, no such prime p exists.

Solution 2: We need to show that the greatest common divisor of x2 + xy + y2 and x2 + 3xy + y2

is 1, given that gcd(x, y) = 1. To do this, we use the following well-known rules for computing the
greatest common divisor:

(S) Symmetry: gcd(a, b) = gcd(b, a)

(E) Euclidean algorithm: gcd(a, b) = gcd(a, b− ka) for any k ∈ Z
(P) Product rule: gcd(a, bc) | gcd(a, b) · gcd(a, c)

Applying these rules, we find:

gcd(x2 + xy + y2, x2 + 3xy + y2)

= gcd(x2 + xy + y2, 2xy) by (E)

| gcd(x2 + xy + y2, 2) · gcd(x2 + xy + y2, x) · gcd(x2 + xy + y2, y) by (P)

= gcd(x2 + xy + y2, 2) · gcd(x, x2 + xy + y2) · gcd(y, x2 + xy + y2) by (S)

= gcd(x2 + xy + y2, 2) · gcd(x, y2) · gcd(y, x2) by (E)

| gcd(x2 + xy + y2, 2) · gcd(x, y)2 · gcd(y, x)2 by (P)

= gcd(x2 + xy + y2, 2) · gcd(x, y)4 by (S)

= gcd(x2 + xy + y2, 2) since gcd(x, y) = 1

= 1,

because x2 + xy + y2 is always odd for coprime x, y. (This can be seen by cases on whether x and y
are odd or even.) Since the gcd of the two polynomials divides 1, it must be 1.

3. Multiplying the second equation by 2 and adding m2n2 to both sides, we find

2amn + (mn)2 = (2am +m2)(2an + n2).

Therefore, define bn = 2an + n2, so the second equation can be written as bmn = bmbn. Multiplying
the first equation by 2 and adding (m+ n)2, we find

2am+n + (m+ n)2 = (2am +m2) + (2an + n2).
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Therefore, bm+n = bm + bn. Therefore, it suffices to find sequences b1, b2, b3, . . . that satisfy both
bmn = bmbn and bm+n = bm + bn.

We claim that if bm+n = bm + bn for all positive integers m,n, then bn = nb1. Certainly this is true
for n = 1. If bk = kb1, then bk+1 = bk + b1 = kb1 + b1 = (k + 1)b1, so by induction, it follows
that bn = nb1 for all positive integers n. Additionally, we observe that any sequence of this form will
satisfy bm+n = bm + bn.

Substituting m = n = 1 into bmn = bmbn, we find b1 = b21, so b1 = 0 or b1 = 1. Combining this with
the previous paragraph, the only possible sequences are bn = 0 or bn = n. Indeed, both sequences
satisfy both bm+n = bm + bn and bmn = bmbn.

Therefore, since an = bn−n2

2 , it follows that the two possible sequences are an = −n2

2 or an = n−n2

2 .

4. We claim that Alpha has a winning strategy. To prove this, define a new game where the position
denoted (m,n) corresponds to an (m− 1)× (n− 1) grid of squares in the original game, so that the
starting position is (11, 101). That is, we add one to the two coordinates’ names, but the actual moves
are the same. Then in the new game, a move (m,n) → (m′, n) is legal if and only if m

2 < m′ < m,
and similarly for a move (m,n) → (m,n′). This is because folding the paper either reduces the width
by at most half, or the length by at most half, which corresponds to reducing the coordinates in the
new game by strictly less than half.

Now we claim that in the new game, the losing positions (where the second player wins) are exactly
the positions of the form (a, 2ka) or (2ka, a), for some a ≥ 2 and k ≥ 0 – that is, positions where
the ratio is a power of two. For example, (10, 20), (10, 40), and (10, 80) are losing, while (10, 30) is
winning.

First, we describe a winning strategy for player 2 in such situations. Given a position (a, 2ka), there
are two cases for the first player’s move: either she moves to (a′, 2ka) (where a/2 < a′ < a), or
she moves to (a, j) (where 2k−1a < j < 2ka). In the first case, we respond by moving to (a′, 2ka′),
which is legal because 2ka′ > 2k(a/2) = (2ka)/2, and it preserves the form where one coordinate
is a power of two times the other. In the second case, we respond by moving to (a, 2k−1a), which is
legal because j is an integer, so j < 2ka − 1, so j/2 < 2k−1a − 1/2, so 2k−1a > j/2. Ultimately,
such a strategy is possible as long as a ≥ 2 and k ≥ 1, and it will continue until the first player is
unable to make a move (position (2, 2)), at which point the second player wins.

Now we argue that there is a winning strategy for player 1 in all other positions. Let the position be
(a, b), where without loss of generality a < b (note that a = b is a winning position for player 2).
Then let k ≥ 0 be the unique integer such that 2k < b

a < 2k+1—we know that such a k exists because
the position is not of the form a, 2ka. Then, player 1’s strategy is to move to (a, 2ka). From here,
player 1 can win with player 2’s strategy from before.

To complete the proof, since the starting position (11, 101) has a ratio 101
11 , which is not a power of

two (not even an integer), it follows that the position is winning, and Alpha has a winning strategy.
In particular, Alpha can win by going to the losing position (11, 88). In the original terms, Alpha can
win by folding the 10× 100 grid into a 10× 87 grid.
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5. We claim that the maximum possible value of D(n) is 2. To start, we label the lily pads in clockwise
order as pads 0, 1, 2, . . . , 2021, such that the frog starts on pad 0. Additionally, if n > 2021, and
n ≡ r (mod 2022) for some 0 ≤ r < 2022, we will say that pad n is pad r.

We prove two lemmas.

Lemma 1: Suppose that gcd(k, 2022) = d. Then the numbers 0, k, 2k, . . . , (2022/d − 1)k are all
distinct modulo 2022.

Proof of Lemma 1: If j1k ≡ j2k (mod 2022), then k(j1 − j2) ≡ 0 (mod 2022), so 2022 | k(j1 −
j2). Therefore, (2022/d) | (k/d)(j1 − j2). But k/d and 2022/d are relatively prime (otherwise
gcd(2022, k) > d). Therefore, (2022/d) | (j1 − j2). Since 0 ≤ j1, j2 ≤ 2022/d − 1, it follows that
j1 = j2. Therefore, it is impossible for the list to contain repeated elements. ■

Lemma 2: Suppose that gcd(k, 2022) = d, the heights of lily pads 0, k, 2k, . . . , (2022/d − 1)k are
k + 1, and the heights of the remaining pads are k. Also, suppose that the frog is currently on pad 0.
Let gcd(k + 1, 2022) = e. Then after a series of jumps, the heights of lily pads 0, (k + 1), 2(k + 1),
. . . , (2022/e− 1)(k+1) will all be k+2, while the heights of the remaining pads will be k+1, with
the frog on pad 0.

Proof of Lemma 2: At the start, we note that 0 ≡ k ≡ 2k ≡ · · · ≡ (2022/d− 1)k ≡ 0 (mod d), so
there are 2022/d pads with height k+1, each with pad numbers congruent to 0 (mod d). Since there
are 2022/d pads with pad numbers congruent to 0 (mod d), this means that all of the pads congruent
to 0 (mod d) have height k + 1.

If d = 1, this amounts to all of the pads having height k + 1. Therefore, the frog’s next several
jumps will be to pads (k + 1), 2(k + 1), 3(k + 1), . . . , until it reaches a pad of height k + 2. The
pads with height k + 2 will be the pads it previously visited (i.e., pads 0, (k + 1), 2(k + 1), . . . ). If
e = gcd(k + 1, 2022), then all of these pads will be 0 (mod e), and by Lemma 1, we know that 0,
(k+ 1), 2(k+ 1), . . . , (2022/e− 1)(k+ 1) will all be distinct modulo 2022. Since there are 2022/e
pads that are divisible by e, we have covered each multiple of e exactly once. The next pad visited is
(2022/e)(k + 1) ≡ 0 (mod 2022), so the frog returns to pad 0, having increased the heights of pads
0, (k + 1), 2(k + 1), . . . , (2022/e− 1)(k + 1) to k + 2. This proves the conclusion of the lemma in
this case.

Otherwise, if d > 1, then the frog first jumps to pad k + 1. This pad is congruent to 1 (mod d), so
it has height k. This increases pad 0 to height k + 2. Since this pad (and all of the pads with pad
numbers congruent to 1 (mod d)) has height k, its next jump will have length k, and as long as it
jumps to distinct pads with pad numbers congruent to 1 (mod d), it will continue making jumps of
length k. If all of its jumps have length k, then it visits the pads (k + 1), (k + 1) + k, (k + 1) + 2k,
. . . , (k + 1) + (2022/d − 1)k. In particular, we note that these pad numbers are all congruent to
1 (mod d), and by Lemma 1, they must be distinct modulo 2022. Making one more jump, the frog
will visit pad (k + 1) + (2022/d)k ≡ k + 1 (mod 2022) next, and at this point, all of the pads with
numbers congruent to 1 (mod d) will have height k + 1.

This process continues—the frog jumps next to pad 2(k + 1), which is congruent to 2 (mod d), so it
has height k. This increases pad (k+1) to height k+2. A similar argument to the previous paragraph
shows that all of the pads with numbers congruent to 2 (mod d) will have their heights increased to
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k + 1, and then pad 2(k + 1) will have its height increased to k + 2. This moves through all of the
residue classes modulo d, and at the end of this process, pads 0, (k+1), 2(k+1), . . . , (d− 1)(k+1)
will all have height k + 2, and the frog will be at pad d(k + 1).

Now since gcd(k, k + 1) = 1, where d | k and e | k + 1, we know that gcd(d, e) = 1. Therefore,
d and e are relatively prime factors of 2022, so de ≤ 2022. Hence d ≤ 2022

e , so d − 1 ≤ 2022
e − 1.

In particular, the frog will keep jumping by k + 1 until it reaches pad (2022/e− 1)(k + 1), at which
point it jumps one more time (length k + 1) to arrive at pad (2022/e)(k + 1) ≡ 0 (mod 2022). This
is the desired state, so the lemma is proven. ■

At the start, all of the pads have height 1, so the frog jumps clockwise by 1 step, and it continues to
do this until it returns to pad 0. At this point, each pad will have height 2. Note that this satisfies the
conditions of Lemma 2 with k = 1.

Now if we have an arrangement of heights where the frog is at pad 0 and satisfies the initial condi-
tions of Lemma 2, then the arrangement in the conclusion of Lemma 2 also satisfies the conditions
of Lemma 2. Therefore, the frog’s movements can be completely described by Lemma 2. In one
application of Lemma 2, the shortest lily pad has height k, and the tallest lily pad has height k + 2,
so D(n) is less than or equal to (k + 2) − k = 2 at every point in time during the steps described
by Lemma 2. Therefore, D(n) ≤ 2. In particular, after 2022 steps, all of the lily pads have height
2. Then after 1011 additional steps, the heights of the lily pads are 3, 2, 3, 2, 3, 2, . . . , 3, 2 (where the
frog is on pad 0). In the frog’s next jump, the height of pad 0 increases to 4, so D(3034) = 4−2 = 2,
hence the maximum value of D(n) is 2.

6. To begin, let xn be the number of fish-friendly 2×n grids. Let an be the number of fish-friendly 2×n
grids where the two squares in the last column are blue, and let bn be the number of fish-friendly 2×n
grids where only one square in the last column is blue. Since at least one square in the last column of
a fish-friendly grid is blue, we find

xn = an + bn.

To compute an, note that if a fish-friendly 2×n has both squares colored blue in the last column, then
the prior 2× (n− 1) grid can be any fish-friendly grid, hence

an = an−1 + bn−1. (1)

To compute bn, consider the second-to-last column. If it has both squares colored blue, then the first
2 × (n − 2) grid can be any fish-friendly grid and there are two choices for the last column, so there
are 2an−1 such grids. If it has only one square colored blue, then the last column is forced to be the
same as the second-to-last column, and there are bn−1 such grids. Thus,

bn = 2an−1 + bn−1. (2)

Adding (1) and (2), we find
an + bn = 3an−1 + 2bn−1.

Hence xn = 2xn−1 + an−1. Since an−1 = an−2 + bn−2 = xn−2, we deduce that

xn = 2xn−1 + xn−2,
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where x1 = 3 and x2 = 7. This is a homogeneous linear recurrence with characteristic equation
λ2 − 2λ − 1 = 0, which has roots λ1 = 1 +

√
2 and λ2 = 1 −

√
2. By the theory of homogeneous

linear recurrences, there exist constants c1 and c2 such that xn = c1(1 +
√
2)n + c2(1 −

√
2)n.

Using the initial conditions x1 = 3 and x2 = 7, we find 3 = c1(1 +
√
2) + c2(1 −

√
2) and

7 = c1(1 +
√
2)2 + c2(1 −

√
2)2. Multiplying the first equation by (1 −

√
2) and subtracting it

from the second equation, we find 4 + 3
√
2 = (4 + 2

√
2) · c1. Multiplying by 2 −

√
2, we find

2 + 2
√
2 = 4c1, so c1 = 1+

√
2

2 . We plug this into the equation to find c2 = 1−
√
2

2 . Therefore, the
solution to this recurrence is

xn =
1

2

(
(1 +

√
2)n+1 + (1−

√
2)n+1

)
.

It follows that
x49 =

1

2

(
(1 +

√
2)50 + (1−

√
2)50

)
.

The term (1 −
√
2)50 is very small, so x49 can be approximated by the first term. In particular,

(1−
√
2)50 > 0, so

x49 >
1

2
· (1 +

√
2)50.

Now (1 +
√
2)2 = 3 + 2

√
2, so (1 +

√
2)4 = 17 + 12

√
2, and (1 +

√
2)5 = 41 + 29

√
2. Hence

(1 +
√
2)10 = 3363 + 2378

√
2. Then 3363 + 2378

√
2 > 1.6 · 212. Therefore, (1 +

√
2)50 >

(1.6 · 212)5 = 1.65 · 260. Since 1.65 = 10.48576 > 23, we find that (1 +
√
2)50 > 23 · 260 = 263.

Hence
x49 >

1

2
· 263 = 262.

Now suppose that we cover the top two rows of the 42×49 grid with a fish-friendly 2×49 grid, which
we can do in at least 262 ways. Then we can color the rest of the grid in 240·49 = 21960 ways, since
each of the remaining squares has two choices of color. Hence there are at least 262+1960 = 22022

fish-friendly colorings.

Note 1: It is possible to improve this count, which would give some leeway on computing the lower
bound of x49. We can cut the 42 × 49 grid into 21 distinct 2 × 49 grids, denoted G1, G2, . . . , G21.
let Ai denote the set of all colorings of the 42× 49 grid such that Gi is fish-friendly. Observe that the
number of fish-friendly colorings is certainly greater than or equal to |A1 ∪ A2 ∪ · · · ∪ A21|. We use
the fact that

|A1∪A2∪· · ·∪A21| ≥ (|A1|+ |A2|+ · · ·+ |A21|)−(|A1∩A2|+ |A1∩A3|+ · · ·+ |A20∩A21|. (3)

This is related to the Principle of Inclusion-Exclusion. If a coloring is in exactly k of the sets Ai, then
it is counted k times in the first set of parentheses, and it is subtracted

(
k
2

)
times in the second set of

parentheses. In particular, if k = 0, the coloring is counted 0 times, if k = 1, the coloring is counted
once, if k = 2, the coloring is counted 2 −

(
2
2

)
= 1 time, and if k ≥ 3, then k −

(
k
3

)
≤ 0. So each

coloring in A1 ∪A2 ∪ · · · ∪A21 is counted at most once by the right side of (3), so the left hand side
is greater than or equal to the right hand side.
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Using the same methods as above, there are x49 ·240·49 fish-friendly colorings in Ai. Also, |Ai∩Aj | =
x249 · 238·49. Since there are

(
21
2

)
intersections, we can use (3) to find that

|A1 ∪A2 ∪ · · · ∪A21| ≥ 21 · x49 · 21960 −
(
21

2

)
· x249 · 21862

= 21862 · 21 · x49 · (298 − 10x49).

Also, x49 < 1
2((1 +

√
2)50 + 1), and (1 +

√
2)5 = 41 + 29

√
2 < 27, so x49 < 1

2(2
70 + 1) < 270.

Hence 10x49 < 16 · 270 < 274, so 298− 10x49 > 298− 274 > 297. Hence the number of fish-friendly
colorings is at least

21862 · 21 · x49 · (298 − 10x49) > 21862 · 21 · 262 · 297 > 21862+4+59+97 = 22025.

Note 2: In fact, using a computer, we can show that the number of fish-friendly colorings is much
larger. By randomly generating grids and testing if they are fish-friendly, we estimate that approxi-
mately 0.086% of grids are fish-friendly (out of 100 million trials). Since there are 242×49 = 22058

grids total, the number of fish-friendly grids is on the order of .00086× 22058, or about 22048.

This is only an estimate, however. We can also use a computer to get a strict lower bound of at least
22043 fish-friendly grids. In particular, if the grid is split into four 10 × 49 subgrids and a 2 × 49
subgrid, the number of colorings that contain a fish-friendly path in one of these five subgrids that
never goes backward is at least 22043.696, using the same Inclusion-Exclusion argument as in Note 1.
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