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1. We consider the following 3 cases: the largest square is 4 × 4; or the largest square is 3 × 3; or all
squares are 1× 1 or 2× 2. In the last case, there are several subcases.

• If the largest square is a 4× 4, then there is 1 way.

• If the largest square is a 3 × 3, then the square has 2 possible x-coordinates and 2 possible
y-coordinates, so there are 2 · 2 = 4 ways.

• Otherwise, all squares are 2 × 2 or 1 × 1. We say that each 2 × 2 square is either a “corner
square” (adjacent to a corner of the original 4×4 square), an “edge square” (adjacent to an edge
of the original 4 × 4 square, but not adjacent to a corner), or a “center square” (not adjacent to
an edge or a corner of the original 4× 4 square).

Corner Square Edge Square Center Square

If there is any center square, then no other 2× 2 squares fit. So there is only 1 way. If there are
no center squares, we consider the number of edge squares, which could be 2, 1, or 0.

– If there are 2 edge squares, there are no corner squares and only 2 ways.
– If there is 1 edge square, there are 4 rotations of the edge square and then two choices for

whether to include a corner square in each of the opposite corners, for 4 × (2 × 2) = 16
ways.

– Finally, we arrive at the case where there are no center or edge squares. Then for each
corner, we choose whether to put a corner square. So there are 24 = 16 ways.

Adding everything up, we get the answer:

1 + 4 + 1 + 2 + 16 + 16 = 40 ways .

2. Solution 1: Let n be the degree of the polynomial p. Then the degree of p(x)2 is 2n and the degree
of p(p(x)) is n2. Since p(x)2 = p(p(x)), we conclude 2n = n2. Therefore, n = 0 or n = 2.

• If n = 0, then let p(x) = c (a constant). We have c2 = c, so c = 0 or c = 1.

• If n = 2, say p(x) = ax2 + bx + c, then the leading coefficient of p(x)2 is a2x4, while the
leading coefficient of p(p(x)) is a3x4. Thus a2 = a3. Since p(x) has degree 2, we know a 6= 0,
hence a = 1. Therefore, we can write

p(p(x)) = p(x)2 + bp(x) + c.

If this is equal to p(x)2, then p(x)2 = p(x)2 + bp(x) + c, or bp(x) + c = 0. Since p(x) has
degree 2, the only way this can be true for all values of x is if b = 0, and then c = 0. Therefore,
p(x) = x2.
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Thus all solutions are p(x) = 0, p(x) = 1, and p(x) = x2 .

Solution 2: If p(x) is constant, then p(x) = 0 or p(x) = 1. Otherwise, let u = p(x), and the equation
becomes u2 = p(u). Since p(x) is not constant, u = p(x) has infinitely many possible values. This
implies that y2 = p(y) has infinitely many solutions for y (plug in u = p(x) for y). But then the
polynomial p(y) − y2 has infinitely many roots, so it must be the zero polynomial, so p(y) = y2.
Renaming y to x, p(x) = x2 for all x.

3. Solution 1: For c ≤ 4, we write c! in binary:

0! = 1! = 1 = 12

2! = 2 = 102

3! = 6 = 1102

4! = 24 = 110002

Here, N2 denotes that N is the binary representation of an integer. Since binary representation is
unique, we see that only 3! and 4! can be written as a sum of two distinct powers of two, and each in
two different ways (reordering the two powers). Also, only 2! can be written as a sum of two of the
same power of two, 2! = 20 + 20. Therefore, the only possible solutions for these c are:

(a, b, c) = (0, 0, 2), (1, 2, 3), (2, 1, 3), (4, 3, 4), (3, 4, 4) .

Now we assume that c ≥ 5. Thus, c! is divisible by both 3 and 5. Also, we may assume without loss
of generality that a ≤ b, and then

2a + 2b = 2a(1 + 2b−a).

Therefore, if 2a+2b = c!, then 1+2b−a must be divisible by 15. But we can list the powers of 2 mod
15, finding

1, 2, 4, 8, 1, 2, 4, 8, . . . .

Therefore, powers of 2 are periodic mod 15 with period 4. In particular, 2n 6≡ −1 (mod 15) for any
n. Therefore, 1 + 2b−a cannot be divisible by 15, and there are no more solutions.

Solution 2: Modulo 7, for any k ≥ 0, 2k ≡ 1, 2, or 4. As you cannot add 1, 2, or 4 to 1, 2, or 4 to get
0 (mod 7), it follows that 2a + 2b is not a multiple of 7 for any a, b. However, since 7 | c! for c ≥ 7,
it follows that c ≤ 6.

Once we know c ≤ 6, we proceed as in Solution 1 to write c! in binary. For c = 0, 1, 2, 3, 4, we get
the same set of solutions as before. For c = 5, we get 5! = 120 = 11110002, which contains four 1s,
so cannot be a sum of two powers of 2. Finally, for c = 6, we get 6! = 720 = 10110100002, which
also cannot be a sum of two powers of 2.
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4. We claim that the leader has a winning strategy. That is, it is possible for the leader to give instructions
to the players such that the leader always wins, no matter which player is the traitor and no matter
how the traitor plays.

Here is one example of instructions that work. Number the players from 1 to 10, and assume that the
leader passes first to player 1. For i < 10, let player i pass to player i + 1 on the first pass, and to
player 10 on all passes after that. Then let player 10 pass first to player 9, then to player 8, then to
player 7, and so on. These instructions are illustrated below.

Player 1 Instructions:
1. Pass to Player 2
2. Pass to Player 10
3. Pass to Player 10

.

.

.

Player 2 Instructions:
1. Pass to Player 3
2. Pass to Player 10
3. Pass to Player 10

.

.

.

Player 3 Instructions:
1. Pass to Player 4
2. Pass to Player 10
3. Pass to Player 10

.

.

.

Player 4 Instructions:
1. Pass to Player 5
2. Pass to Player 10
3. Pass to Player 10

.

.

.

Player 5 Instructions:
1. Pass to Player 6
2. Pass to Player 10
3. Pass to Player 10

.

.

.

Player 6 Instructions:
1. Pass to Player 7
2. Pass to Player 10
3. Pass to Player 10

.

.

.

Player 7 Instructions:
1. Pass to Player 8
2. Pass to Player 10
3. Pass to Player 10

.

.

.

Player 8 Instructions:
1. Pass to Player 9
2. Pass to Player 10
3. Pass to Player 10

.

.

.

Player 9 Instructions:
1. Pass to Player 10
2. Pass to Player 10
3. Pass to Player 10

.

.

.

Player 10 Instructions:
1. Pass to Player 9
2. Pass to Player 8
3. Pass to Player 7

.

.

.

We claim that with these instructions, the leader wins. If player 10 is the traitor, the leader wins as
soon as the traitor gets the ball for the first time. If player ` is the traitor, for ` < 10, then players
1 through ` − 1 will have already gotten the ball when the traitor gets it. No matter who the traitor
throws the ball to next, the ball will get to player 10 before it gets back to player `. Player 10 then
throws to players 9, 8, . . . , ` + 1, in order, who each throw the ball back to player 10. Therefore, all
of the remaining players will receive the ball before player ` (the traitor) gets the ball again.

5. Suppose that x, y, and z are the lengths of the tangents from A, B, and C, respectively to the incircle.

A B

C

I

D

E

F

x

x

y

y

z
z

r

r
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First we derive a formula for the inradius r of triangle ABC in terms of x, y, and z, and the semiperime-
ter s = a+b+c

2 . Note that a = y + z, b = x + z, and c = x + y. Adding these, we find
a + b + c = 2(x + y + x), hence s = x + y + z. Subtracting a = y + z, b = x + z, and
c = y + z, respectively, from s = x+ y + z, we find

s− a = x

s− b = y

s− c = z.

Therefore, substituting these into Heron’s Formula, we find [ABC] =
√
sxyz. Since the area of any

triangle is equal to its inradius times its semiperimeter, we also have [ABC] = rs (where r is the
inradius). Thus rs =

√
sxyz, and

r =

√
xyz

s
. (1)

Next, we consider ∠C. We know that I lies on the angle bisector of ∠C, so if F is the foot of the
perpendicular from I to BC, then4IFC is right with ∠ICF = ∠C

2 . Therefore,

tan
∠C
2

= tan∠ICF =
r

z
,

and applying the formula for r in (1),

tan
∠C
2

=

√
xyz/s

z
=

√
xy

sz
. (2)

Finally, we apply Power of a Point to point D and the circumcircle of 4ABI . We find BD · AD =
ED ·DI . Therefore, since BD = y, AD = x, DI = r, and ED = IE −DI = b+ a− r, we find

xy = (b+ a− r) · r. (3)

Note that b+a = (x+ z)+ (y+ z) = s+ z. Therefore, replacing b+a by s+ z in (3), and replacing
r using equation (1), we find

xy =

(
(s+ z)−

√
xyz

s

)
·
√

xyz

s
.

Hence xy = (s+ z)
√

xyz
s −

xyz
s , or

xy +
xyz

s
= (s+ z)

√
xyz

s
.

We can factor this as

xy
(
1 +

z

s

)
= (s+ z)

√
xyz

s
.
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Therefore,

xy

(
s+ z

s

)
= (s+ z)

√
xyz

s
.

Dividing by all the terms on the right hand side, we find√
xy

sz
= 1.

Therefore, by (2), tan ∠C
2 = 1. Hence ∠C

2 = 45◦, and ∠C = 90◦ .

6. Note: This turns out to be possible for all n ≥ 0 with n ≡ 0 or n ≡ 1 mod 4, with only three
exceptions: n = 5, n = 8, and n = 12. In particular, as long as n ≥ 13, it’s possible to color the
balls such that the probability of two balls being the same is equal to the probability of two balls being
different. The problem asks to show this only for n ≥ 200.

Solution 1: Let the n balls be of k different colors, and let there be ai balls of each color i for
1 ≤ i ≤ k. So

∑k
i=1 ai = n. Then we would like to have

∑k
i=1

(
ai
2

)
= 1

2

(
n
2

)
, i.e. the number of ways

to pick two balls of the same color is half the total number of ways to pick two balls. However, if any
ai are 1 they contribute nothing to the sum. So it suffices to prove that for any n ≥ 200, n ≡ 0 or 1
mod 4, we can choose nonnegative integers ai such that

1

2

(
n

2

)
=

k∑
i=1

(
ai
2

)
and

k∑
i=1

ai ≤ n.

Define a monochromatic pair to be a pair of balls with the same color. Thinking in terms of limited
resources, the problem is to spend at most n balls to create exactly 1

2

(
n
2

)
monochromatic pairs, by

distributing the balls into different colors.

First, pick a maximally so that
(
a
2

)
≤ 1

2

(
n
2

)
, and color a balls red. We claim that this leaves us with

at least 1
4n balls left to color, and at most 3

4n monochromatic pairs left to create. To show this, note
that 1

2(a− 1)2 ≤
(
a
2

)
≤ 1

2

(
n
2

)
≤ 1

4n
2. Rearranging, a ≤ 1+ 1√

2
n. This is less than 3

4n as long as n is

sufficiently large; in particular, as long as
(
3
4 −

1√
2

)
n > 1, which is true for n ≥ 25 since(

3

4
− 1√

2

)
n > (.75− .71)n =

n

25
≥ 1.

So we colored at most a ≤ 3
4n balls. Additionally, since a was maximal,

(
a
2

)
+ a =

(
a+1
2

)
> 1

2

(
n
2

)
.

Hence the number of monochromatic pairs left to create, or 1
2

(
n
2

)
−
(
a
2

)
, is less than a, and thus less

than 3
4n.

Therefore, after coloring these a balls red, we are left with at least 1
4n balls to color in order to create

at most 3
4n monochromatic pairs. At this point, we color groups of 13 balls at a time with their own

color. Coloring 13 balls with the same color creates
(
13
2

)
= 78 monochromatic pairs. Therefore, if

we use b ≤
⌊
3n/4
78

⌋
different groups of 13 balls, where each group is monochromatic, and where b is
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chosen maximally, then we have at most 77 monochromatic pairs left to create, and we also colored at
most 13 · 3n/478 = n

8 balls. We are left with at least 1
4n−

1
8n = 1

8n balls, and at most 77 monochromatic
pairs to go.

To create the 77 (or fewer) remaining monochromatic pairs, first color the maximum number of balls
a single color; this requires coloring at most 12 balls (

(
12
2

)
= 66) and leaves us with at most 11

monochromatic pairs to create. To create these at most 11 monochromatic pairs, we color the remain-
ing balls in groups of 3 (3 balls give us 3 monochromatic pairs) until there are less than 3 monochro-
matic pairs remaining to create, at which point we require at most 4 balls (color 2 and then color 2) to
create the remaining 2 monochromatic pairs. Altogether, we can create 77 or fewer monochromatic
pairs using at most 12 + 3 + 3 + 3 + 4 = 25 balls.

Therefore, as long as 1
8n ≥ 25, there are enough balls remaining to be colored to obtain the last 77

pairs. This is equivalent to n ≥ 200, so we are done.

Solution 2: As in Solution 1, we want to prove that 1
2

(
n
2

)
can be written as a summation

∑(
ai
2

)
where∑

ai ≤ n. We use the following lemma.

Lemma: For all positive integers N , N can be written as a summation of triangular numbers,
∑k

i=1

(
ai
2

)
,

such that
k∑

i=1

ai ≤ 4 +
√
2N +

4
√
128N.

Proof: To prove the lemma, we write N =
(
a
2

)
+
(
b
2

)
+c
(
3
2

)
+d
(
2
2

)
, where a is first chosen maximally,

then b is chosen maximally, then c is chosen maximally, and finally d is chosen to pick up everything
else. Since a is chosen maximally,

(
b
2

)
≤ a − 1. Since b is chosen maximally, 3c + d ≤ b − 1. And

finally d ≤ 2. The sum of all the binomial indices is

k∑
i=1

ai = a+ b+ 3c+ 2d ≤ a+ b+ (b− 1) + 2 = a+ 2b+ 1.

Now
(
a
2

)
≤ N implies that 1

2(a−1)2 ≤ N , so a ≤ 1+
√
2N . Similarly,

(
b
2

)
≤ a−1 ≤

√
2N implies

b ≤ 1 +
√
2
√
2N . So the sum of all the binomial indices is

k∑
i=1

ai ≤ (1 +
√
2N) + 2(1 +

√
2
√
2N) + 1 = 4 +

√
2N +

√
128N.

Now that the lemma is proven, it only remains to show that for n ≥ 200, N = 1
2

(
n
2

)
satisfies 4 +√

2N + 4
√
128N ≤ n. Since N ≤ 1

4n
2, we find

4 +
√
2N +

4
√
128N − n ≤ 4 +

√
n2/2 +

4
√
32n2 − n,

so it suffices to show that for n ≥ 200,

4 +
√
n2/2 +

4
√
32n2 − n ≤ 0. (1)
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This function is strictly decreasing, because if t =
√
n, it can be written as (1/

√
2−1)t2+ 4

√
32t+4,

which is a downward opening parabola with a vertex at t =
4√32

2−
√
2
< 3

1/2 = 6. Hence it is decreasing
for t > 6, or n > 36. So we now plug in n = 200, finding

4 + 100
√
2 + 40

4
√
0.5− 200 < 4 + 142 + 40− 200

< 0.

Thus (1) is true for all n ≥ 200, which shows that we can complete the process for all n ≥ 200. In
fact, the smallest integer value of n for which (1) is true is 92, so this actually works for n ≥ 92.

7


