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1. Ada and Otto are engaged in a battle of wits. In front of them is a figure with six dots, and nine sticks
are placed between pairs of dots as shown below. The dots are labeled A, B, C, D, E, F . Ada begins
the game by placing a pebble on the dot of her choice. Then, starting with Ada and alternating turns,
each player picks a stick adjacent to the pebble, moves the pebble to the dot at the other end of the
stick, and then removes the stick from the figure. The game ends when there are no sticks adjacent to
the pebble. The player who moves last wins. A sample game is described below. If both players play
optimally, who will win?

A

BC

D

E F

Sample Game

1. Ada places the pebble at B.

2. Ada removes the stick BC, placing the pebble at C.

3. Otto removes the stick CD, placing the pebble at D.

4. Ada removes the stick DE, placing the pebble at E.

5. Otto removes the stick EA, placing the pebble at A.

6. Ada removes the stick AB and wins.

Solution Ada will win. Here is one possible strategy.

Turn 1: Ada begins by putting the pebble at A.

Turn 2: Ada removes stick AB, and places the pebble at B.

Turn 3: The only remaining stick for Otto to choose is stick BC, so Otto removes this stick, placing
the pebble at C.

Turn 4: Ada removes stick CD, placing the pebble at D.

Turn 5: Otto is again forced to choose the only remaining adjacent stick, DE. So Otto removes this
stick, and places the pebble at E.

Turn 6: Ada removes stick EF , placing the pebble at F .

Turn 7: Otto is forced to remove stick FA, placing the pebble at A.

Turn 8: Ada removes stick AC, placing the pebble at C.

Turn 9: Otto is forced to remove stick CE, placing the pebble at E.

Turn 10: Ada removes stick EA, leaving no remaining sticks.

At this point, there are no valid moves, so Ada will win because every one of Otto’s moves is forced.

2. Four fair six-sided dice are rolled. What is the probability that they can be divided into two pairs
which sum to the same value? For example, a roll of (1, 4, 6, 3) can be divided into (1, 6) and (4, 3),
each of which sum to 7, but a roll of (1, 1, 5, 2) cannot be divided into two pairs that sum to the same
value.

Solution 1 We split this into cases based on the the form of the unordered values shown on the dice.
In the following, 1 ≤ a, b, c, d ≤ 6 are distinct numbers. After determining the (unordered) numbers
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that can appear on the dice, we must determine how many ways we can order those dice rolls in
sequence.

Case 1: The unordered numbers shown are {a, a, a, a}
In this case, it is clear that the pairing (a, a) and (a, a) will yield equal sums, so we have 6
possible choices for a, and this is the number of possible rolls that take this form.

Case 2: The unordered numbers shown are {a, a, a, b}
In this case, one of the pairs will contain b, hence the pairs will be (a, b) and (a, a). But these
can never be equal as a 6= b.

Case 3: The unordered numbers shown are {a, a, b, b}
To obtain equal sums, we must split the numbers into the pairs (a, b) and (a, b). There are(
6
2

)
= 15 ways to select a and b, and there are

(
4
2

)
= 6 ways to order the rolls (select two of the

rolls to be a’s). Hence there are 15 · 6 = 90 total rolls that take this form.

Case 4: The unordered numbers shown are {a, a, b, c}
In this case, either b pairs with a or b pairs with c. If b pairs with a, then a+ b = c+ a, which
is impossible as b 6= c. Therefore, b must pair with c, so 2a = b + c. Therefore, b + c is even.
We may assume without loss of generality that b ≤ c, hence the possibilities for (b, c) are

(b, c) = (1, 3), (1, 5), (2, 4), (2, 6), (3, 5), (4, 6).

Therefore, there are six ways to choose (b, c), and a is automatically determined (it is the
average of b and c). Then there are 4!

2! = 12 ways to order the rolls, hence there are 6 · 12 = 72
total rolls that take this form.

Case 5: The unordered numbers shown are {a, b, c, d}
In this case, the sum of the pairs must be representable in at two ways with distinct integers. We
find

5 = 1 + 4 = 2 + 3

6 = 1 + 5 = 2 + 4

7 = 1 + 6 = 2 + 5 = 3 + 4

8 = 2 + 6 = 3 + 5

9 = 3 + 6 = 4 + 5.

These are the only numbers that can be represented as the sum of two numbers in at least
two ways using distinct numbers. In particular, for the numbers 5, 6, 8, 9, we know immediately
what the four numbers a, b, c, d are. For 7, we must choose two of the three pairs, and we can do
this in three ways. Therefore, the number of ways to choose {a, b, c, d} is 1+1+1+1+3 = 7.
Then we can order the rolls in 4! = 24 ways. Thus there are 7 · 24 = 168 total rolls that take
this form.

Adding these together, we find 6 + 90 + 72 + 168 = 336 possibilities, so the answer is 336
64

= 7
27 .
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Solution 2 Let the four numbers be (a, b, c, d). Consider these three events:

I. a+ b = c+ d

II. a+ c = b+ d

III. a+ d = b+ c.

We want the probability of “I or II or III”. By inclusion-exclusion, this is

P[I] + P[II] + P[III]− P[I and II]− P[I and III]− P[II and III] + P[I and II and III].

(Here, P means the probability of an event.) Symmetry in the problem implies that I, II, and III have
equal probability, as well as “I and II”, “I and III”, and “II and III”. Therefore, the probability we are
looking for is simply

3P[I]− 3P[I and II] + P[I and II and III]. (1)

To compute P[1], split into cases based on the value of the sum s = a+ b. We have

P[1] = P[a+ b = c+ d] =
12∑
s=2

P[a+ b = c+ d = s]

=
12∑
s=2

P[a+ b = s] · P[c+ d = s]

=
12 + 22 + 32 + 42 + 52 + 62 + 52 + 42 + 32 + 22 + 12

64

=
146

64
.

The other two are easier. If I and II both hold, then b = c and a = d, and if b = c and a = d then I
and II both hold. The probability of this is simply

P[I and II] = P[a = d and b = c] = P[a = d] · P[b = c] =
1

36
=

36

64
.

Finally, if I and II and III all hold, that means a = b = c = d, which can happen in exactly six ways,
so

P[I and II and III] = P[a = b = c = d] =
6

64
.

From (1), the desired probability is thus

3 · 146
64
− 3 · 36

64
+

6

64
=

336

64
=

7

27
.

3. Can each positive integer 1, 2, 3, . . . be colored either red or blue, such that for all positive integers
a, b, c, d (not necessarily distinct), if a+ b+ c = d then a, b, c, d are not all the same color?

Solution We claim that no such coloring exists. For the sake of contradiction, assume that such a
coloring exists. Without loss of generality, we may assume that 1 is colored red. In the string of steps
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below, if a number n is known to be colored red, we denote it as nR, and if it is known to be colored
blue, we denote it as nB . Each of the implications below follow from the fact that if all but one of the
distinct numbers in a+ b+ c = d are the same color, then the final number must be a different color.

1R + 1R + 1R = 3⇒ 3 is blue.

3B + 3B + 3B = 9⇒ 9 is red.

1R + 4 + 4 = 9R ⇒ 4 is blue.

Now we have

1R + 1R + 9R = 11⇒ 11 is blue AND 3B + 4B + 4B = 11⇒ 11 is red.

This is a contradiction because 11 can only have one color. Therefore, no such coloring exists.

4. Equiangular hexagon ABCDEF has AB = CD = EF and AB > BC. Segments AD and CF
intersect at point X and segments BE and CF intersect at point Y . If quadrilateral ABYX can
have a circle inscribed inside of it (meaning there exists a circle that is tangent to all four sides of the
quadrilateral), then find AB

FA .

Solution We start by proving the following lemma about quadrilaterals that can have circles inscribed
in them.

Lemma 1. If quadrilateral PQRS can have a circle inscribed inside of it, then PQ+RS = QR +
SP . In other words, the sum of the opposite sides of such a quadrilateral are equal.

Proof. Given a quadrilateral PQRS that can have a circle inscribed in it, let T,U, V,W be the points
of tangency as shown below, and let O be the center of the circle.

P Q

R

S

T

U

V

W

O

Then 4OPT and 4OPW are both right triangles with right angles at T and W respectively. They
also have OP = OP and OT = OW , so by the Pythagorean Theorem, WP = PT . Similarly,
TQ = QU , UR = RV , and V S = SW . In fact,

PQ+RS = PT + TQ+RV + V S = WP +QU + UR+ SW = PS +RQ.

Thus in any such quadrilateral, the sum of opposite sides is equal.
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We will use this lemma. But we first derive some other facts. To start, we extend line AF through
A and F , we extend line BC through B and C, and we extend line DE through D and E. If the
extensions of AF And BC meet at K, the extensions of BC and DE meet at L, and the extensions of
DE and AF meet at M , then4KLM must be equilateral. This follows because hexagon ABCDEF
is equiangular, so ∠FAB = ∠ABC = 120◦, and therefore, ∠BAK = 180 − ∠FAB = 60◦,
∠KBA = 180−∠ABC = 60◦, so ∠K = 180−∠BAK−∠KBA = 60◦. Similar arguments show
∠L = ∠M = 60◦. We draw the diagram below, where Z is the intersection of AD and BE.

A B

C

DE

F

K

LM

X Y

Z

Note that KB = AB and CL = CD = AB, hence KL = 2AB+BC. Similarly, LM = 2AB+DE
and MK = 2AB + FA. But triangle KLM is equilateral, so KL = LM = MK, and thus
BC = DE = FA. Let x = AB = CD = EF and let y = BC = DE = FA. Then as
AM = MD = x+y, we know that4AMD ∼ 4KML, hence4AMD is equilateral. In particular,
AD ‖ KL. By similar logic, FE ‖ KL. We can apply the same argument to find

AB ‖ FC ‖ML and DC ‖ EB ‖MK.

This means that all of the angles in the above diagram are 60◦ or 120◦. It also implies that ABYX is
a trapezoid. It further implies4BAZ is equilateral, so AZ = AB = x. Also,4AFX is equilateral,
so AX = FA = y.

As x > y, we find that x = AZ ≥ AX = y, so X lies between A and Z. Therefore, ZX =
AZ−AX = x−y. By symmetrical arguments, XY = Y Z = ZX = x−y. As4BY C is equilateral,
we also find BY = BC = y. Therefore, quadrilateral ABYX is an isosceles trapezoid with AB = x,
BY = AX = y, and XY = x − y. Applying Lemma 1, we find AB + XY = BY + AX , or
x+ (x− y) = y + y. Thus 2x = 3y, and AB

FA = x
y = 3

2 .

5. Let a0, a1, a2, . . . be a sequence of integers (positive, negative, or zero) such that for all nonnegative
integers n and k,

a2n+k − (2k + 1)anan+k + (k2 + k)a2n = k2 − k.

Find all possible sequence an.

Solution 1 We can factor the equation as

[an+k − kan][an+k − (k + 1)an] = k(k − 1). (1)
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Substituting in k = 1, we find that either an+1 = 2an or an+1 = an for all integers n.

If p is a prime such that p | ar, then by repeatedly applying an+1 = 2an or an+1 = an, we find that
p divides an for all integers n ≥ r. Substituting k = 2 and n = r into (1) we notice that the LHS is
divisible by p2, and the RHS is equal to 2; hence p2 | 2, which is a contradiction. Thus an is never
divisible by any prime for any n, so an = ±1.

In particular, an+1 = an for all integers n, and an is constant–either 1 or −1. Substituting either of
these sequences into (1) shows that both are valid solutions.

Solution 2 After multiplying by 4 and completing the square twice, we find

(2an+k − (2k + 1)an)
2 − (2k − 1)2 = a2n − 1.

As the closest square to (2k − 1)2 is (2k − 2)2 (for k positive), we see that if x 6= 2k − 1 is an
integer, then |x2 − (2k − 1)2| ≥ 4k − 3. Thus if |a2n − 1| 6= 0, then |a2n − 1| ≥ 4k − 3 for all
positive integers k. But this contradicts the fact that |a2n − 1| is finite. Therefore, a2n = 1, and
|2an+k − (2k + 1)an| = 2k − 1. Now if an+k = −an, then |2an+k − (2k + 1)an| = 2k + 3, which
is not equal to 2k − 1, hence an+k 6= −an. But as a2n = 1 for all n, we see that either an = 1 for all
n, or an = −1 for all n. It is easy to check that both of these sequences work.

Solution 3 Factoring the equation as in (1) with k = 1, we find that either an+1 = an or an+1 = 2an
for all nonnegative integers n. It follows that, for all nonnegative integers n, either (i) an+2 = an, or
(ii) an+2 = 2an, or (iii) an+2 = 4an. Now factor the equation with k = 2, and we get

(an+2 − 2an)(an+2 − 3an) = 2.

Fix n ≥ 0. Consider the cases (i), (ii), and (iii). In case (ii), the above gives 0 = 2, a contradiction.
In case (i), the above gives (−an)(−2an) = 2, so a2n = 1. In case (iii), (2an)(an) = 2, so a2n = 1. In
any case, a2n = 1, so an ∈ {−1, 1} for all n.

Because an+1 has to be either an or 2an, and an ∈ {−1, 1} for all n, an must be constant. Thus the
only sequences that satisfy the desired property are an = 1 for all n ≥ 0, and an = −1 for all n ≥ 0.

6. Find all positive integer pairs (u,m) such that u+m2 is divisible by um− 1.

Solution 1 If u+m2 is divisible by um− 1, then

u(u+m2)−m(um− 1) = u2 +m

must also be divisible by um− 1. Therefore, if (u,m) works, then (m,u) works, so we may assume
that m ≤ u.

As (um−1) | (u+m2), we see that um−1 ≤ u+m2. Rearranging this, we find u(m−1) ≤ m2+1.
Therefore, either m = 1 or u ≤ (m2+1)/(m−1) = m+1+2/(m−1), which means u is quite close
to m. In particular, if m ≥ 4, then u ≤ m+ 5

3 . But we assumed that m ≤ u, hence u ≤ m+ 5
3 ≤ u+ 5

3 .
The only integers m that satisfy this are m = u and m = u−1. If m = u, then u2−1 divides u+u2,
and these numbers have a common factor of u+ 1, hence u− 1 divides u. But u ≥ m ≥ 4, so this is
impossible. If m = u− 1, then u(u− 1)− 1 divides u+ (u− 1)2, or u2 − u− 1 divides u2 − u+1.
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But when u ≥ 4, u2 − u − 1 ≥ 11 (it’s an increasing quadratic function). A number that is greater
than 11 clearly cannot be a factor of a number that is two greater than that number. Therefore, this is
impossible. Hence m ≤ 3. We enumerate each of these possibilities separately.

• If m = 1, then u− 1 divides u+ 1. This is only possible if u = 2, 3.

• If m = 2, then 2u− 1 divides u+ 4. Note that 2u− 1 > u+ 4 if u > 5. Hence u ≤ 5. Testing
the five possible values of u, we find that u = 1, 2, 5 work.

• If m = 3, then 3u− 1 divides u+ 9. Note that 3u− 1 > u+ 9 if u > 5. Hence u ≤ 5. Testing
the five possible values of u, we find that u = 1, 5 work.

We assumed that m ≤ u, so we also must include the reversed pairs. Hence the only (u,m) are

(1, 2), (1, 3), (2, 1), (2, 2), (2, 5), (3, 1), (3, 5), (5, 2), (5, 3).

Solution 2 Suppose that u+m2 = (um−1)q for some positive integer q. Then m2−qum+u+q = 0.
By the quadratic formula,

m =
qu±

√
q2u2 − 4(u+ q)

2
. (1)

In order for this to be an integer, the discriminant, q2u2 − 4(u + q), must be a perfect square. Note
that q2u2 is a perfect square, and the next smallest perfect square is (qu− 1)2 = q2u2− 2qu+1. For
u ≥ 5 and q ≥ 4, we can squeeze q2u2 − 4(u+ q) in between (qu− 1)2 and (qu)2.

To show this, note that if u ≥ 5 and q ≥ 4, then certainly (q − 2)(u− 2) ≥ 5. Hence

(q − 2)(u− 2) ≥ 5

qu− 2u− 2q + 4 ≥ 5

2qu− 4u− 4q ≥ 2

q2u2 − 4u− 4q ≥ q2u2 − 2qu+ 2 = (qu− 1)2 + 1.

Therefore, (qu − 1)2 < q2u2 − 4u − 4q < (qu)2. Hence if u ≥ 5 and q ≥ 4, then q2u2 − 4u − 4q
cannot be a perfect square, hence um − 1 cannot divide u +m2. Therefore, either u ≤ 4 or q ≤ 3.
We enumerate each of these cases below.

• If u = 1, then we want (m− 1) | (1+m2). Clearly (1, 1) does not work, while (1, 2) and (1, 3)
satisfy the desired property. Otherwise, 1+m2 = (m− 1)(m+1)+2, so if 1+m2 is divisible
by m − 1, then 2 is also divisible by m − 1. But this can only happen if m − 1 = 1, 2. Hence
m = 2, 3 are indeed the only possibilities.

• If u = 2, then we want (2m− 1) | (2 +m2). Therefore, (2m− 1) | (8 + 4m2), and

4m2 + 8 = (2m− 1)(2m+ 1) + 9.

Hence (2m− 1) | 9. This is only possible if 2m− 1 = 1, 3, 9, or n = 1, 2, 5. We see that (2, 1),
(2, 2), (2, 5) satisfy the desired property.
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• If u = 3, then we want (3m− 1) | (3 +m2). Therefore, (3m− 1) | (27 + 9m2), and

9m2 + 27 = (3m− 1)(3m+ 1) + 28.

Hence (3m− 1) | 28. This is only possible if 3m− 1 = 1, 2, 4, 7, 14, 28, and the only integers
m that satisfy one of these equations are m = 1, 5. We see that (3, 1), (3, 5) satisfy the desired
property.

• If u = 4, then we want (4m− 1) | (4 +m2). Therefore, (4m− 1) | (64 + 16m2), and

16m2 + 64 = (4m− 1)(4m+ 1) + 65.

Hence (4m − 1) | 65. This is only possible if 4m − 1 = 1, 5, 13, 65, and none of these yield
integers m. Therefore, there are no solutions with u = 4.

• If q = 1, then the discriminant in (1) is u2−4u−4. This is clearly less than u2−4u+4 = (u−2)2.
Also, if 2u ≥ 14, then u2 − 4u − 4 ≥ u2 − 6u + 10 = (u − 3)2 + 1. Therefore, if u ≥ 7,
then u2 − 4u − 4 cannot be a perfect square. Checking through u = 1, 2, . . . , 6, we find that
u2 − 4u − 4 is only a perfect square for u = 5, and then by (1), m = 5±

√
25−24
2 = 2 or 3. We

see that (5, 2) and (5, 3) satisfy the desired property.

• If q = 2, then the discriminant in (1) is 4u2 − 4u− 8. This is strictly less than 4u2 − 4u+ 1 =
(2u− 1)2. Also, if 4u ≥ 13, then 4u2 − 4u− 8 ≥ 4u2 − 8u+ 5 = (2u− 2)2 + 1. Therefore,
4u2 − 4u − 8 is not a perfect square for u ≥ 4. Checking through u = 1, 2, 3, we find that
4u2− 4u− 8 is only a perfect square when u = 2, 3. If u = 2, then by (1), m = 4±

√
16−16
2 = 2,

while if u = 3, then by (1), m = 6±
√
36−20
2 = 1 or 5. We see that (2, 2), (3, 1), and (3, 5) satisfy

the desired property.

• If q = 3, then the discriminant in (1) is 9u2−4u−12. This is strictly less than the perfect square
(3u)2. Also, if 2u ≥ 14, then 9u2 − 4u − 12 ≥ 9u2 − 6u + 2 ≥ (3u − 1)2 + 1. Therefore, if
u ≥ 7, then 9u2 − 4u − 12 cannot be a perfect square. Checking through u = 1, 2, . . . , 6, we
find that 9u2 − 4u− 12 is only a perfect square for u = 2. Then by (1), m = 6±

√
36−20
2 = 1 or

5. We see that (2, 1) and (2, 5) satisfy the desired property.

Therefore, the only (u,m) such that u+m2 is divisible by um− 1 are

(1, 2), (1, 3), (2, 1), (2, 2), (2, 5), (3, 1), (3, 5), (5, 2), (5, 3).
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