
The Second Annual Utah Math Olympiad–Solutions
1. First, note that both Todd and Allison place exactly one blue stone in each of their turns. Also, it will

take Todd at least eight moves to get from the center to a corner. Therefore, as Todd would go both
first and last, it would take at least 8+ 7 = 15 turns of Todd and Allison combined before Todd could
move to a corner square. Therefore, at least 15 blue stones are placed on the grid.

We claim that Allison can always force Todd to move to a corner square in his eighth turn. Without loss
of generality, we may assume that Todd’s first turn is to move north. Allison decides that she wants to
force Todd to the northeast corner, namely corner D. In order to do this, she plays immediately to the
West of Todd, blocking any westward motion. So after Todd and Allisons’ first turns, we may assume
that the board looks like the diagram below.

Note that Todd can only move north or west. After this point, Allison executes the following strategy
based on Todd’s turn.

(i) If Todd moves north, then Allison plays directly to his west.

(ii) If Todd moves east, then Allison plays directly to his south.

In order for this strategy to make sense, we must show that after Allison moves, then Todd can only
move to the north or to the west. Let’s look at a very general picture. If Todd moves north, then he
leaves a blue stone behind him, and Allison plays to his west. This leaves the following arrangement
of the board.
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Therefore, in this case, Todd can only move north or east.

In the case that Todd moves to the east, then Allison moves directly to his south, so we obtain the
following picture.

Once again, it is clear that Todd can only move to the north or to the east.

Therefore, after Allison moves according to her strategy, Todd can only move in the north or east
direction. But he can only make 4 north moves before reaching the edge of the board, and 4 east moves
before reaching the edge of the board. Therefore, according to the described strategy of Allison, she
can force Todd to reach a corner in 8 steps. This is also the minimal number of steps that it would
take Todd to reach a corner, so we conclude that this is Allison’s optimal strategy. Therefore, as stated
earlier, we conclude that at the end of the game, there will be exactly 15 blue stones on the board.

2. We present a solution that works for both parts (a) and (b).

There are no solutions to the equations in question. Consider the equations mod 8. They become the
same congruence.

x2 + y2 ≡ 6 (mod 8).

If the equations had a solution, then this congruence would also have a solution, so it suffices to show
that this congruence has no solutions. The only perfect squares mod 8 are 0, 1, and 4. Therefore, the
only possibilities for the sums of squares are 0, 1, 2, 4, 5 (mod 8). Therefore, the sum of two squares
is never congruent to 6 (mod 8). Hence the equations have no solutions.

We can also approach this problem without directly using the language of modular arithmetic. Sup-
pose that the first equation has some solution (x, y). If x is even, then x2 will be even, and if x is odd,
then x2 will be odd. Therefore, because the sum of an even number and an odd number is odd, we
know that either x and y are both even, or else they are both odd. If x and y are both even, let x = 2x′

and y = 2y′ for integers x′ and y′. Then the first equation becomes

4(x′)2 + 4(y′)2 = 2014.

But 2014 = 2 · 1007, so it is not divisible by 4, so this case is impossible. Therefore, x and y must
both be odd. Therefore, we can represent them by x = 2x′− 1 and y = 2y′− 1 for integers x′ and y′.
Then the first equation becomes

(4(x′)2 − 4x′ + 1) + 4(y′)2 − 4y′ + 1) = 2014.
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4((x′)2 − x′ + (y′)2 − y′) = 2012

(x′)2 − x′ + (y′)2 − y′ = 503.

Now (x′)2−x = x′(x′−1) is the product of two consecutive integers, and so one of these consecutive
integers must be even. Therefore, the product must be even. The same applies to (y′)2 − y′, hence
their sum must be even. But the sum is 503, which is odd, so we have a contradiction. Therefore, the
first equation has no solutions.

The same argument can be adapted for part (b) of the problem.

3. Let the legs of the right triangle be a and b, with a ≤ b. Suppose that the right triangle satisfies the
given properties. Then we have the following picture.
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We know that AE = b, BE = a, and AH = a, therefore EH = b − a. We know that EH = ES,
as they are tangents to circle O from the same point (or by power of a point), and hence ES = b− a.
But as BE = a, this implies that BS = BE − ES = a − (b − a) = 2a − b. We also find that
TB = BS = 2a− b, as they are tangents to circle O from the same point.

Similarly, as AH = a, we know that AT = AH = a. Therefore, AB = AT +TB = a+(2a− b) =
3a− b. Therefore, by the Pythagorean Theorem applied to triangle ABC, we know that

a2 + b2 = (3a− b)2 = 9a2 − 6ab+ b2

0 = 8a2 − 6ab.

Therefore, a(4a − 3b) = 0. So either a = 0, which leads to degenerate triangles, or else 4a = 3b.
Therefore, we know that a is a multiple of 3, say a = 3a′ and b is a multiple of 4, say b = 4b′.
Plugging this into the equation tells us that 12a′ = 12b′, or a′ = b′. Therefore, all such triangles have
legs of lengths 3n and 4n, and a hypotenuse of length 5n.
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Now we must check that all such right triangles satisfy the desired property. Suppose we are given
a right triangle ABE with side lengths AB = 5n, BE = 3n, and EA = 4n, where n is a positive
integer, and points are labeled below.

A B
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Then the perimeter is given by

12n = EH +HA+AT + TB +BS + SE = 2 · EH + 2 ·AT + 2 · TB

by the fact that SE = EH , HA = AT , and TB = BS. Therefore,

2(EH +AT + TB) = 2(EH +AB) = 2(EH + 5n) = 12n,

so we conclude that EH = SE = n. We can use a similar method to show that HA = AT = 3n
and TB = BS = 2n. Therefore, EB = HA. Now we arrange two of the triangles into a part of the
square formation.
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As AH = 3n, angle AHD is right, and OH⊥AE, we know that D, H , and O are collinear. Because
DH contains the side of a smaller square, we know that O lies on the extension of the smaller square.
By symmetry, the same must apply for the other three triangles. Therefore, all triangles with sides
lengths 3n, 4n, and 5n, where n is a positive integer do indeed satisfy the desired property. Thus they
describe all such triangles.
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4. If Joel starts out with a list whose length is not 2, and eventually encounters a list (m,n) of length 2,

he might as well have started out with the list (m,n) (because we only care about what lists appear an
infinite number of times). On the other hand if he never encounters a list (m,n) of length 2, we can
safely ignore this case as no lists of length 2 will appear infintely often. Therefore, we may assume
that Joel starts out with a list of length 2.

We claim that for any m,n ≥ 0, (m,n)→ · · · eventually arrives at one of the following two repeating
patterns:

(1, 2)→ (0, 1, 1)→ (1, 2)→ · · · (∗)
(2, 2)→ (0, 0, 2)→ (2, 0, 1)→ (1, 1, 1)→ (0, 3)→ (1, 0, 0, 1)→ (2, 2)→ · · · (∗∗)

Clearly, this is true for the lists (m,n) = (1, 2), (2, 2), and (0, 3). Next, consider the case where
(m,n) = (k, 2) or (2, k), for k > 2:

(k, 2)→
(2, k)→ (0, 0, 1, 0, 0, . . . , 0︸ ︷︷ ︸

k−3 zeros

, 1)→ (k − 1, 2)

Then (k − 1, 2) will eventually become (k − 2, 2), and so on, until we arrive at (2, 2), which will
repeat pattern (∗∗).
Next, consider all other cases where m = 2 or n = 2 not yet covered:

(2, 1)→ (0, 1, 1)→ (1, 2)

(2, 0)→
(0, 2)→ (1, 0, 1)→ (1, 2)

and (1, 2) repeats pattern (∗).
We now know that if m = 2 or n = 2, (m,n) eventually reduces to one of the two repeating patterns
(∗∗) or (∗). Now more generally, consider the case (m,n) = (a, b) or (b, a), where 0 ≤ a < b. Then

(b, a)→
(a, b)→ (0, 0, . . . , 0︸ ︷︷ ︸

a zeros

, 1, 0, 0, . . . , 0︸ ︷︷ ︸
b−a−1 zeros

, 1)→ (b− 1, 2)

which we have already shown eventually repeats one of the two patterns.

The only case remaining is (m,n) = (k, k) for some k 6= 2. For small k, this is:

(0, 0)→ (2)→ (0, 0, 1)→ (2, 1)

(1, 1)→ (0, 2)

(3, 3)→ (0, 0, 0, 2)→ (3, 0, 1)→ (1, 1, 0, 1)→ (1, 3)
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all three cases (2, 1), (0, 2), (1, 3) have already been covered. Now when k ≥ 4,

(k, k)→ (0, 0, . . . , 0︸ ︷︷ ︸
k zeros

, 2)→ (k, 0, 1)→ (1, 1, 0, 0, . . . , 0︸ ︷︷ ︸
k−2 zeros

, 1)→ (k − 2, 3)

At this point either k − 2 = 3, or k − 2 6= 3; we dealt with both of these cases before.

The only pairs (m,n) which Joel could end up writing infinitely many times are those which appear
in one of the two repeating patterns:

(1, 2), (2, 2), (0, 3) .

5. Ignore the first equation for now. From the second equation x2 + y2 + z2 = 4x
√
yz − 2yz, deduce

(x2 − 4x
√
yz + 4yz) + (y2 − 2yz + z2) = 0

(x− 2
√
yz)2 + (y − z)2 = 0

Since x, y, z are real, and as the sum of two squares can only be 0 when both squares are 0 (as squares
are nonnegative), this implies y = z, and

x− 2
√
yz = 0 =⇒ x = 2

√
zz = 2|z| = 2z

Now we recall the first equation.

xyz = 1 =⇒ (2z)(z)(z) = 1 =⇒ z3 =
1

2
=⇒ z =

1
3
√
2

Therefore,

x =
2
3
√
2
, y =

1
3
√
2
, z =

1
3
√
2
.

6. First, we place the steps into two different categories as labeled below. The first category is called the
forward steps, while the second category is called the lateral steps.

Lateral StepsForward Steps

In a path from A to B, there are exactly 2n forward steps. To see this, split the diagram at what
we will term levels as shown below. Each level consists of the segments along which we can move
laterally without moving forward.
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A path consists of a step from Level 0 to level 1 (the first forward step), followed by some sequence
of steps in level 1, followed by a step from level 1 to level 2 (the second forward step), followed by
some sequence of steps in level 2, and so on. Note that due to the restrictions on steps, once we reach
a level, we cannot return to a previous level. Therefore, we can only make one forward step between
levels, so we will make exactly 2n forward steps.

Given a path, we split it up into its forward steps and its lateral steps. We claim that the lateral steps
are completely determined (or rather, forced) by our choice of forward steps. If we know the forward
steps of a path, then the nth forward step will start at level n − 1 and end at a point on level n.
The (n + 1)th forward step will start at another point on level n. But then there is a unique path in
level n between these points without retracings because we can only move in one direction in a level.
Therefore, every path is uniquely determined by its forward steps.

Also, given a sequence of 2n forward steps with one forward step in each gap between levels, we can
fill in lateral steps uniquely as well, and hence there is a unique path associated to each sequence of
2n forward steps. This establishes a one-to-one correspondence between paths and sequences of 2n
forward steps, each starting at a different level.

Therefore, the number of paths is equal to the number of ways to select 2n forward steps, with exactly
one forward step between two levels. Referring to the above diagram, for the first forward step, we
have 2 choices, for the second forward step we have 4 choices, . . . , for the nth forward step we have
2n choices, for the (n+1)th forward step we have 2n choices, for the (n+2)th forward step we have
2(n − 1) choices, . . . , for the (2n)th forward step we have 2 choices. Therefore, the total number of
paths is

(2 · 4 · 6 · · · (2n))((2n) · (2n− 2) · · · 2) = (2 · 4 · 6 · · · (2n))2.

This is always a perfect square, so the result clearly follows.
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