
The First Annual Utah Math Olympiad–Solutions
1. (a) The path below that starts at B and ends at E and travels along the segments in the direction of

the arrows retraces the diagram in exactly nine segments without lifting the pencil from the page.

B E

(b) Suppose we dissect the diagram into two pieces as shown.

Note that we have eight distinct segments, so if we had a retracing that used exactly eight seg-
ments, then these would have to be our segments (connected in some order). The dots shown
above are the only locations where we can change direction. If we are counting the number of
dots in a valid path, we will count one for the starting point, seven for the changes in direction, and
one for the ending point, for a total of nine dots. If we overlay the two diagrams above, however,
we count ten distinct dots that we must visit.

This is a contradiction, so we cannot retrace the diagram using eight segments.
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2. If A is the area of a square, then we claim that Alice has a winning strategy if and only if 1 < A < 2

or 2 < A ≤ 4.
First, note that If 1 < A < 2, then Alice will win because if she cuts the paper in half, then Carl will
receive a sheet of paper of area less than 1 and lose. If A = 2, then Alice can cut off any area up to
half, so the remaining area will be greater than or equal to 1, but less than 2. Thus Carl will not lose
on his first turn. He then cuts off half, giving Alice a sheet of area less than 1. In this case, Carl wins.
Therefore, if a player receives 2, the other player has a winning strategy. Therefore if 2 < A ≤ 4,
then Alice will cut the paper into sheets of size 2 and A−2. Then Carl will receive the sheet of size 2,
and Alice has a winning strategy. We claim that for all other areas above 4, the optimal strategy leads
the game to go on infinitely. First, consider what happens when a player receives a sheet of paper with
area 4 < A ≤ 8. Then when they make their cut, the paper that they pass will have area greater than
2 and less than 8. But if they give the other player a piece of paper of area 2 < A ≤ 4, then as noted
above, that player will have a winning strategy. Therefore, in order to not lose, the player will make
a cut that leaves the other player with an area greater than 4. This process would theoretically go on
infinitely if both players pursue optimal strategies.

3. Solution 1
We claim that the only possibilities for x are 38, 538, 462, and 962.

Let x = 100a+10b+ c, with a, b, c ∈ {0, 1, 2, ..., 9}. We are looking for when the last three digits of
x2 are ddd, with d ∈ {1, 2, ..., 9}. Now the problem becomes finding when (100a+10b+c)2 ≡ 111d
(mod 1000). Expanding out (100a+ 10b+ c)2 this becomes

200ac+ 100b2 + 20bc+ c2 ≡ 100d+ 10d+ d (mod 1000) (1)

Since 20 divides 1000, we can take this equation modulo 20 to simplify things. Doing this, it becomes
c2 ≡ 11d (mod 20). Now consider all possible cases for c and d.

c c2 (mod 20)
0 0
1 1
2 4
3 9
4 16
5 25 ≡ 5

6 36 ≡ 16

7 49 ≡ 9

8 64 ≡ 4

9 81 ≡ 1

d 11d (mod 20)
1 11
2 22 ≡ 2

3 33 ≡ 13

4 44 ≡ 4

5 55 ≡ 15

6 66 ≡ 6

7 77 ≡ 17

8 88 ≡ 8

9 99 ≡ 19

As you can see, the only possibility for when c2 ≡ 11d (mod 20) is if c2 ≡ 11d ≡ 4, which implies
c = 2 or 8 and d = 4. We split into the cases c = 2 and c = 8.
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Case 1: c = 2

Return to equation (1) and plug in the new values for c and d:

400a+ 100b2 + 40b+ 4 ≡ 444 (mod 1000)

400a+ 100b2 + 40b ≡ 440 (mod 1000)

Now divide by the common factor of 20 to get:

20a+ 5b2 + 2b ≡ 22 (mod 50) (2)

This implies 5b2 + 2b ≡ 2 (mod 10). Modulo 2 we find 5b2 ≡ 0, so b must be even; modulo 5 we
must have 2b ≡ 2 so b ≡ 1 (mod 5). By Chinese remainder theorem, b ≡ 0 (mod 2) and b ≡ 1 (mod
5) imply b ≡ 6 (mod 10), so b = 6.

Now returning to (2) we get

20a+ 5b2 + 2b = 20a+ 5 · 36 + 2 · 6 ≡ 22 (mod 50)

⇒ 20a+ 20 ≡ 0 (mod 50)

⇒ 2a+ 2 ≡ 0 (mod 5)

⇒ a ≡ 4 (mod 5)⇒ a = 4 or a = 9

So we have the solutions 462 and 962, which we check both work.

Case 2: c = 8

Return to equation (1) and plug in the new values for c and d:

1600a+ 100b2 + 160b+ 64 ≡ 444 (mod 1000)

1600a+ 100b2 + 160b ≡ 380 (mod 1000)

Now divide by the common factor of 20 to get:

80a+ 5b2 + 8b ≡ 19 (mod 50) (3)

This implies 5b2+8b ≡ 9 (mod 10). Modulo 2 we find 5b2 ≡ 1, so b must be odd; modulo 5 we must
have 3b ≡ 4 so b ≡ 3 (mod 5). By Chinese remainder theorem, b ≡ 1 (mod 2) and b ≡ 3 (mod 5)
imply b ≡ 3 (mod 10), so b = 3.

Now returning to (3) we get

80a+ 5b2 + 8b = 80a+ 5 · 9 + 8 · 3 ≡ 19 (mod 50)

⇒ 80a ≡ 0 (mod 50)
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⇒ 3a ≡ 0 (mod 5)

⇒ a ≡ 0 (mod 5)⇒ a = 0 or a = 5

So we have the solutions 38 and 538, which we check both work.

Solution 2

We are attempting to solve x2 ≡ 111 · y (mod 1000), for 1 ≤ y ≤ 9. By (mod 10) considerations,
we can immediately restrict to the cases 111, 444, 555, 666, and 999. Now, as a consequence of the
Chinese Remainder Theorem, the residue of n (mod 1000) is uniquely determined by the residue of
n (mod 8) and (mod 125). The only perfect squares (mod 8) are 0, 1, and 4. However, 111 ≡ 7
(mod 8), 444 ≡ 4 (mod 8), 555 ≡ 3 (mod 8), 666 ≡ 2 (mod 8), and 999 ≡ (mod 7), we can
restrict to the case y = 4.

Now, 444 ≡ 4 (mod 8) and 444 ≡ 69 (mod 125), so we must solve x21 ≡ 4 (mod 8) and x22 ≡ 69
(mod 125). Certainly, x1 ≡ 2, 6 (mod 8), i.e. x1 ≡ 2 (mod 4). We solve the second equation first
(mod 5), then (mod 25), then (mod 125):

x22 ≡ 4 (mod 5), so x2 ≡ 2, 3 (mod 5).

(5x′2 ± 2)2 ≡ 19 (mod 25), so x′2 ≡ ±2 (mod 5), and x2 ≡ ±12 (mod 25). (5x′′2 ± 12)2 ≡ 69
(mod 125), so x′′2 ≡ ±3 (mod 5), and x2 ≡ ±87 (mod 125) = ±38 (mod 125).

So then we have to simply find all x with x ≡ 2 (mod 4), and x ≡ ±38 (mod 125). This gives 38,
38 + 500 = 538, 87 + 375 = 462, and 87 + 875 = 962. Thus the only possibilities are 38, 462, 538,
and 962.

4. We claim that it is necessary and sufficient that β + γ = π
2 . To prove that this condition is necessary,

we do some angle chasing. Suppose that such a triangle XY Z exists with Z on l3 as shown.

l1l2

αβ
l3

I

X

Y

γ Z

Now ∠Y IX = π−α, so by triangleXY I , we know that ∠XY I = π− (π−α)−γ = α−γ. By our
assumption that the lines are angle bisectors, we have ∠IY Z = α−γ as well. Similarly, ∠IXZ = γ.
Now ∠Y IZ = π−β, so using triangle IY Z, we have ∠Y ZI = π− (π−β)− (α−γ) = β−α+γ.
Using vertical angles, we know that ∠XIZ = α+β. Thus by triangle XIZ, we know that ∠IZX =
π− (α+β)− (γ) = π−α−β− γ. As l3 bisects ∠XZY , we know that ∠XZI = ∠Y ZI , or rather
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π − α − β − γ = β − α + γ. Simplifying this, we get π2 = β + γ. Therefore, for such a triangle to
exist, it is necessary that β + γ = π

2 .

We claim that this condition is also sufficient. Suppose β + γ = π
2 . First, let’s ignore l3 for the

moment as shown below, to the left. From points X and Y , we draw lines at angles γ and α − γ
respectively. If we call their intersection point Z, then l1 and l2 are angle bisectors of 4XY Z as
shown below, to the right. Then the line passing through I and Z must also be an angle bisector of
4XY Z by concurrency of angle bisectors. We claim that line IZ is in fact line l3, which would tell
us that this condition is sufficient.

l1
l2

α

I

X

Y

γ
Z

l1l2

α

I

X

Y

γ Z
Z ′

We proceed again by angle chasing. Once again, ∠Y IX = π−α, so by triangle XY I , we know that
∠XY I = π − (π − α)− γ = α− γ. As the three lines are all angle bisectors of triangle XY Z, we
know that ∠Y ZX = π − 2(γ)− 2(α− γ) = π − 2α. Thus ∠IZY = ∠IZX = π

2 − α. By triangle
IY Z, we have ∠Y IZ = π − (α − γ) − (π2 − α) = π

2 + γ. If Z ′ is the intersection of line ZI with
line XY , then we know that ∠Y IZ ′ = π − (π2 + γ) = π

2 − γ. By our assumption that β + γ = π
2 ,

we know that this angle is just β. But line l3 was drawn at angle β from l2, so line l2 is in fact our
phantom line ZI . Therefore, triangle XY Z is the desired triangle, so this condition is sufficient.

5. Malone has the winning strategy.

Strategy 1

One possible winning strategy is as follows. Malone first picks a = 1. If Cooper picks b = b0, then
Malone picks c = b20 + 1. If Cooper picks c = c0, then Malone picks b = 1. Now we prove why this
works. Suppose we have a finished game, with polynomial x3 + ax2 + bx+ c. Then this polynomial
can be factored as x3 + ax2 + bx + c = (x − r1)(x − r2)(x − r3). We know from Viete’s relations
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(or simply expanding the factorization) that

−a = r1 + r2 + r3

b = r1r2 + r2r3 + r3r1

−c = r1r2r3.

Now note that if we use these equations, we get that a2 − 2b = r21 + r22 + r23 and b2 − 2ac =
r21r

2
2 + r22r

2
3 + r23r

2
1. If all of the roots are real, then both of these quantities must be greater than or

equal to 0 because they are the sums of squares. Therefore, if one of these two quantities is negative,
then the polynomial must have a nonreal root. Now if we implement our strategy in the first case, the
two quantities are 1 − 2b0 and b20 − (b20 + 1) = −1 respectively. As the second quantity is negative,
the cubic must have a nonreal root. In the second case, the two quantities are 12 − 2(1) = −1 and
12 − 2c0 respectively. As the first quantity is negative, the cubic must have a nonreal root. Therefore,
this strategy gives the cubic a nonreal root, so Malone has a winning strategy.

Strategy 2

Another winning strategy is as follows. First, pick c = 1. If Cooper picks b = b0, then Malone pick
h such that 2h3 − b0h− 1 = 0 (this has a real root because cubics always have at least one real root).
Now we write ((x−h)2+h2)(x+ 1

2h2
) = x3+( 1

2h2
−2h)x2+(2h2− 1

h)x+1 = x3−a0x2+b0x+1.
Therefore, the cubic must have a nonreal root because the roots to the quadratic factor are x = 2h±2hi

2 .
If Cooper picks a = 27, then Malone picks b = 1

27 . Then the equation factors as (x2 + 1
27)(x+ 27),

which we see has a nonreal root. If Cooper picks a = a0, then we write (x + a0
3 )

3 + (1 − a30
27 ) =

x3 + a0x
2 + a2

3 x+ 1. Then this obviously has a nonreal root (find the cube roots of (1− a3

27 )). So in
any case, Malone has a winning strategy.

Strategy 3 (due to Benjamin Lovelady)

To prove that Malone has the winning strategy, we claim that Malone can always force the cubic to
factor as (x2 + 1)(x + s), where s is a real number. Clearly, this would have a nonreal root, i. This
factorization expands to x3 + sx2 + x+ s. Based on the expansion, we see that Malone’s first move
should be to pick b = 1. If Cooper chooses a = a0, then Malone chooses c = a0, yielding the cubic
x3 + a0x

2 + x + a0. If Cooper chooses c = c0, then Malone chooses a = c0, yielding the cubic
x3+c0x

2+x+c0. It is clear that both cubics are of the desired form, hence each must have a nonreal
root. Therefore, Malone has the winning strategy.

6. First, we claim that the number of ways to tile the 1×n hexagonal strip below is Fn, the nth Fibonacci
number, where F0 = F1 = 1 and Fn+1 = Fn + Fn−1.

· · ·

n tiles
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This is obviously true for n = 1 and n = 2 because we have 1 way to tile a 1 × 1 hexagonal strip
and we have two ways to tile a 2× 1 hexagonal strip. Now, suppose the statement is true for some k
and some k + 1. Then a (k + 2) × 1 hexagonal strip can end in either consist of a (k + 1) × 1 strip
followed by a 1× 1 strip or a k × 1 strip followed by a 2× 1 strip. Thus the number of ways to tile a
(k + 2)× 1 strip is Fk + Fk+1 = Fk+2, so in fact the statement is true for all n, as desired.

· · ·

· · ·

Fk+1

Fk

Now we claim that the number of ways to tile the hexagonal border of a triangle where each side is of
length n is F 3

n . To demonstrate this, it suffices to demonstrate a one-to-one correspondence between
tilings of the hexagonal border and ordered 3-tuples of tilings of a n × 1 hexagonal strip, or in other
words, the number of ways to tile three n× 1 hexagonal strips, one colored red, one colored blue, and
one colored green.

For a given tiling of the hexagonal border of a triangle, we attempt to map the tiling of the bottom
n × 1 strip to a red tiling, the tiling of the left n × 1 strip to a blue tiling, and the tiling of the right
n× 1 strip to a green tiling by “pulling” the tiling off. For example, we can map the following tiling
of a 4-hexagonal grid as shown below to an RGB n× 1 tiling.

Red

B
lu
e

G
reen

A

B

C

A

B

A

B

C

C

This can be done in the natural way if the bottom, right, and left sides consist of valid n × 1 tilings.
But this doesn’t always happen. The only case where it can fail, however, is if we have a corner tiled
as shown below. In this case, we map it to the shown red and green tilings.
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· · ·

· · ·

C C

C

· · ·

· · ·

It is easy to see that this will map every tiling of the n-hexagonal grid (n ≥ 3) to a distinct RGB
n-tiling. Furthermore, it is also easy to see that every RGB n-tiling will come from a valid tiling of
the n-hexagonal grid. Therefore, this gives us a one to one correspondence between RGB n-tilings
and tilings of the n-hexagonal grid. From our work at the beginning, the number of red, green, and
blue n-tilings is Fn, so the number of RGB n-tilings is just F 3

n , which is therefore the number of
tilings of the n hexagonal grid.
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